Active Directory DN Collection

The Problem

The basic problem we are trying to solve is that an object can have an attribute that contains one or more DNs (including the dn attribute itself), and the attribute can effectively change without the object’s USN being updated. This is due to the fact that Active Directory computes DNs on the fly rather than storing them explicitly. As a result, a naïve delta collection based solely on USNs will not correctly update all DN attributes that have changed. This problem can occur in two forms, as described in the following sections.

Change in Ancestor Name

[image: image1]
Changing the DN of the computer implicitly changes the DN of the printer.

If an object is either moved or renamed, then the DN for each of its descendants is implicitly changed. Figure 1 shows a small sample tree in which printer HP628 is a child of computer Grundy. Initially the DN of the printer is cn=HP628,cn=Grundy,ou=MA,ou=USA (Figure 1a). If the computer is renamed to Lapjpg (Figure 1b) then the DN of the printer changes to cn=HP628,cn=Lapjpg,ou=MA,ou=USA, and if the computer is moved to a different OU (Figure 1c) then the DN of the printer changes to cn=HP628,cn=Grundy,ou=CO,ou=USA. In both cases, the USNs for the computer object and its cn attribute will up updated, but the printer object will be completely unaffected.

This problem is compounded by the fact that the computer object may not even exist in the collector database. Thus, maintaining child-parent relationships and dynamically computing DN is not an option.

Detecting the change to the computer object and attempting to propagate this change to all descendants within the database via string search and replace also fails because there is no way to determine the previous name of the computer object.

Change in Referenced Object Name

[image: image2]
Figure 2: Changing the DN of the manager implicitly changes the employee’s manager attribute.

When an attribute contains one or more DNs which refer to another object in the forest, these DNs are stored by Active Directory as links rather than explicit strings. Thus, when the DN of a referenced object changes, any attribute which contains this DN is also implicitly changed. Figure 2 shows an example in which the ‘manager’ attribute of an employee object contains the DN of the employee’s manager. If the manager DN changes because the manager is replaced (Figure 2b) or relocated (Figure 2c), the employee’s manager field is effectively updated even though the USNs of the employee object and its attributes are unchanged. This problem is even more difficult to deal with than the ancestor problem because the employee object could be located anywhere within the forest and is not necessarily a descendant of the manager object.

The Solution

We will present separate solutions to the two forms of the DN problem, then describe how to integrate the solutions into the active directory collection.

Dealing with Ancestor Name Changes

We can detect potential instances of the ancestor name change problem by performing a global search for all objects whose cn USN has been updated (it may be necessary to perform this search in two phases by first finding all objects that have changed and then determining the subset whose cn USN has changed, but this is an implementation detail). For each of these objects we perform a full subtree collection, returning the GUID and DN attributes for every object in the subtree. Finally, these (GUID, DN) pairs are returned to the database which uses them to update object DNs. Not all of the pairs will correspond to objects in the database; if a GUID is not recognized then the pair is simply ignored.

As an optimization, when the set of objects whose cn USN has changed is collected, the set is pruned by removing any object which is a descendent of another object within the set. This ensures that the subtree collections are disjoint.

Dealing with Referenced Object Name Changes

On the database side, we can solve the referenced object name change problem by storing GUIDs rather than DNs, thus making explicit the links between objects. This approach has two requirements. First, the agent must translate DNs to GUIDs before returning the results to the collector (except, of course, for the dn attribute itself which is returned as-is). While this translation could, in theory, be performed at the collector, it is much less efficient to do so due to the second requirement: referenced objects must be explicitly collected and inserted into the database. This is because the agent must inspect the referenced object in order to perform the DN(GUID translation, and the database must store the object in order to perform the reverse GUID(DN translation for the UI.
To satisfy these requirements, the agent maintains a DN(GUID translation table which persists across inspections. The specific implementation of this table is an orthogonal issue, but it should be indexed on both DN and GUID (this will be explained in the next section). Whenever the agent encounters a DN contained in an attribute, the agent attempts to use the table to translate the DN into a GUID. If the DN is not found in the table then the referenced object is explicitly collected in order to obtain its GUID. The new DN(GUID translation is then added to the table, the DN is replaced with the GUID, and the referenced object is added to a special result file which will be returned to the collector with the other result files and inserted first. In the case that the referenced object cannot be located, the original DN will simply be stored as a fixed string. This process is illustrated in Figure 3.

[image: image3]
Figure 3: Collection of a hypothetical Employee data class. 1. An employee object is collected. The manager attribute contains a DN. 2. The table lookup to perform the DN(GUID translation fails. 3. The DN is used to collect the manager object’s GUID. 4. The DN(GUID translation is added to the table. 5. The manager object is written to the referenced object result file. 6. The DN in the employee object is replaced by the manager object’s GUID. 7. After any other DN attributes are translated, the employee object is written to the employee dataclass result file.

Putting the Pieces Together

The ancestor name change problem affects the DN(GUID translation table in the same way that it affects the database. Thus, when a subtree collection is performed under an object whose cn USN has changed, the results must be used to update the translation table in addition to being returned to the database.

Hence the need to index the translation table on GUID as well as DN. One other consideration is that a consistent state must be maintained in the event that the agent is killed asynchronously or aborts the collection due to a schema change. The entire collection can be divided into the following steps:

1. Initial Schema Collection. The AD schema is inspected prior to each collection.

2. Changed Name Collection. Subtree collection of DN and GUID under any object whose cn USN has changed. The DN(GUID translation table is updated. This is a safe operation, even though the updates have not yet been propagated to the database, because if the collection is aborted or killed then the next collection will use the same baseline USN when looking for changed names.

3. User-Driven Collection. The user-specified data classes are collected. New DN(GUID translations are not placed in the main translation table; they are placed in an auxiliary table which is initially empty. Any translation is attempted against both the main and auxiliary tables. The auxiliary table is necessary because it is not safe to add a new translation until confirmation has been received that the corresponding referenced object has been successfully inserted into the collector database.

4. Schema Verification. A USN-based schema collection verifies that the schema did not change during the collection. If it did, the collection is aborted and restarted.

5. Transfer of Results. The schema update file, the GUID–DN update file, the referenced object result file and the dataclass-specific result files are returned to the collector and inserted in that order.

6. Table Merge. Once the agent receives confirmation from the collector that the referenced object result file has been successfully inserted into the database, it merges the main and auxiliary translation tables.

As a final note, the implementation of the DN(GUID translation table should minimize the probability of table corruption in the event that the agent is asynchronously terminated. If the table does become corrupted, which must always be a detectable condition, it can simply be deleted and then dynamically reconstructed as collection proceeds. This introduces a cold-start effect, which will temporarily affect performance, but it ensures correct operation.

ou=“USA”

Printer

cn=“HP628”

Computer

cn=“Grundy”

ou=“MA”

ou=“CO”

ou=“CO”

ou=“MA”

ou=“USA”

Printer

cn=“HP628”

Computer

cn=“Lapjpg”

ou=“CO”

ou=“MA”

ou=“USA”

Printer

cn=“HP628”

Computer

cn=“Grundy”

(a) Original tree

(c) Computer is moved

(b) Computer is renamed

(c) Manager is relocated

(b) Manager is sacked

(a) Original tree

ou=“TX”

ou=“CO”

ou=“USA”

Employee

manager=…

Manager

cn=“James”

ou=“TX”

ou=“CO”

ou=“USA”

Employee

manager=…

Manager

cn=“John”

ou=“TX”

ou=“CO”

ou=“USA”

Employee

manager=…

Manager

cn=“James”

Referenced object result file

6.

4.

3.

DN

2.

1.

11e08a97-9f14-4f59-9f1c-b1fe3da823fa

cn=Grundy,ou=CO,ou=USA

5544d128-bbfd-4e45-ac81-a20afdb551be

cn=HP628,cn=Grundy,ou=CO,ou=USA

6d087378-dba1-4c1d-acdf-093e6f98206f

GUID

cn=james,ou=CO,ou=USA

Employee

manager=…

Manager

GUID=…

Employee dataclass result file

5.

7.

