Overview

The purpose of this paper is to document best practices that should be taken into consideration when an application is load balanced or setup for failover. The scope of this document is limited to application load balancing and failover. This document only relates to load balancing and fail over issues and thus is at a high level of granularity.

Load Balancing and Fail Over is a standard for Key Applications. Other applications may also require load balancing and/or fail over on a case by case basis determined by load and performance.For applications on distributed WAS machines, the current corporate solution is to use BigIP pooling.
Assumptions

This model assumes a thin client. It fits within the context of our typical Java applications that use HTML on clients and Java Servlet technology on the server side.

In all distributed Websphere application, all failover and load balancing functions are handled by the BigIP.

By default load balanced solutions implement server/IP affinity (stickiness). This implies that requests from a particular client are routed back to the same JVM until the client's session (HttpSession) times out. That is, a user uses the same server during the life of their session.

If the application requires seamless failover regardless of server affinity or if the application needs to eliminate server affinity for other reasons, then the following steps can be taken:

· Reducing the amount of information actually needed in the session

· Persisting the session to a database

· This can be a performance constraint.

· Continuously passing all required information as part of the request object.

· Be careful not to violate any privacy or security constraints

· Hidden form objects

· Protect the application from users doctoring hidden attributes to retrieve sensitive information. (E.G. If an application id is returned in a hidden field can the user increment / decrement or change that value to get a unauthorized application?)

· Search requests could be repeated for each submission with only the pertinent results being displayed

If an application requires fail over but not load balancing then the application will be configured for load balancing with all requests going to one JVM and a "hot" backup available in case of fail over. A "hot" backup is a JVM configured to not handle any normal load. The BigIP will automatically failover to the “hot” backup in case of failure of the primary JVM.

Programming Model

The Enterprise Java Programming Model addresses three areas: transactions, lazy initialization and object caching.

Transactions

First let us consider transactions. For clarity we will use Kaseem et al's definition of transactions. "Transactions divide an application into a series of indivisible or 'atomic' units of work. A system that supports transactions ensures that each unit of work fully completes without interference from the other processes. If the unit of work can be completed in its entirety, it is committed. Otherwise, the system completely undoes (rolls back) whatever work the unit had performed".

The Enterprise Java Programming Model follows guidelines for transactions in an J2EE environment. Within the J2EE environment a "transaction should start with the reception of a user request and end with the return of the response. The transaction should not stay active while the user is working on the data contained in the response".

More specifically, the Enterprise Java Programming Model follows the J2EE guideline for transactions in terms of what is persisted. From the user's perspective the unit of work could span multiple screen interactions.

The needs of a particular application determine the portion of a user's session state that is persisted. This decision is based on failure probability and the cost of the user re-entering information versus the cost of storing pending information.

The cost of storing pending information includes the programming time to create and maintain pending information in the persistence store.

Lazy Initialization

Additionally, the preferred model utilizes lazy initialization. Lazy initialization is a technique that delays instantiation of objects until they are needed. Lazy initialization improves performance as well as simplifies development concerns related to fail over. Lazy initialization is, however, just a technique that tells the application when to cache some data. Once the data is cached all of the concerns over synchronization of that data across the JVMs in the next section still apply.

Caching

Finally, the Enterprise Java Programming Model gives developers the option of utilizing an object caching mechanism to improve performance. If developers choose to utilize an object caching mechanism, it is recommended that they understand the factors involved in caching objects. This understanding can be gained by studying Grand's Cache Management Pattern.

Factors to consider include synchronization of the cache with data stores as well as with other JVMs. If an application does not have exclusive rights to update an object's persistence store, it may be most cost effective to get a fresh copy of the object with each client interaction. You should however, first add a timestamp to the record in the persistence store which automatically updates when a record is changed. You can then check the timestamp and not incur the penalty associated with unnecessarily reloading the data.

Cache synchronization across multiple JVMs can become an issue in a load balanced application. If it is required for an application to have synchronized cache across multiple JVMs, it is recommended that an existing pattern that is known to work is used.

 SUBJECT * MERGEFORMAT Page 1 of 1

