Solaris 2.x--Tuning Your TCP/IP Stack and More

If your system behaves erratically after applying some of these tweaks, please don't blame me. Always make backup copies of the files you are changing, and have those backups handy before starting to tune. I have carefully assembled the information you see here, but there are no guarantees that what worked for me will work for you. Please don't assume my recommendations are infallible: they are starting points, not absolutes. Always read my reasoning, don't use the recommendations blindly.

Before you start, you ought to grab a copy of the TCP state transition diagram as specified in RFC 793. The drawback is the missing error correction supplied by later RFCs. There is an easier way to obtain blowup printouts to staple to your office walls. Grab a copy of the PostScript file pocket guide

History and Introduction

This page and the related work have been long in the making. I started out peering wide-eyed over the shoulders of two people from a search engine provider when they were installing a German version of their server for a customer of my former employer. My only alternative resource for tuning information was the brilliant book TCP/IP Illustrated, Volume 1 , by Richard Stevens. I then started collecting as much information about tuning as I was able to get my hands on. You have the result in front of you on these pages.

Solaris allows you to tune, tweak, set, and reset various parameters related to the TCP/IP stack while the system is running . Back in the SunOS 4. x days, one had to change various C files in the kernel source tree, generate a new kernel, reboot the machine, and try out the changes. The Solaris feature of changing the important parameters on the fly is very convenient.

Many of the parameters I mention in the rest of the document you are reading are time intervals. All intervals are measured in milliseconds . Other parameters are usually bytecounts, but occasionally different units of measurements are used and documented. A few items appear totally unrelated to TCP/IP, but due to the lack of a better framework, they materialized on this page.

Most tuning parameters can be changed using the program ndd . Any user may execute this program to read the current settings, depending on the readability of the respective device files, but only the superuser is allowed to execute ndd -set to change values. This makes sense, considering the sensitive parameters you are tuning. Details on the use of ndd can be obtained from its manpage. A few example uses of ndd :

ndd /dev/tcp ? # Show all parameter keys

ndd /dev/tcp tcp_mss_def # Show the value of this key

ndd -set /dev/ip ip_forwarding 0 # Switch off <I>forwarding</I>

All keys starting out with ip_ have to be used with the pseudo device /dev/ip . Analogous behavior is true for the keys which start with tcp_ , and so on. Andres Kroonmaa kindly supplied a nifty script to check all existing values for a network component (tcp, udp, ip, icmp, etc.). I do the same thing using Perl. Both scripts are available from my web page.

TCP Connection Initiation

This section is dedicated exclusively to the various queues and tunable variable(s) used during connection instantiation. The socket API maintains some control over the queues. But in order to tune anything, you have to understand how listen and accept interact with the queues. For details, see the various books by Stevens mentioned in the " See Books. " section later in this appendix.

When the server calls listen , the kernel moves the socket from the TCP state CLOSED into the state LISTEN , thus doing a passive open. All TCP servers work like this. Also, the kernel creates and initializes various data structures, among them the socket buffers and two queues:

Incomplete connection queue

This queue contains an entry for every SYN that has arrived. BSD sources assign so_q0len entries to this queue. The server sends off the ACK of the client's SYN and sends the server-side SYN . The connection gets queued and the kernel now awaits the completion of the TCP three-way handshake to open a connection (see See .). The socket is in the SYN_RCVD state. On the reception of the client's ACK to the server's SYN , the connection stays one round trip time (RTT) in this queue before the kernel moves the entry into the completed connection queue.

Completed connection queue

This queue contains an entry for each connection for which the three-way handshake has completed. The socket is in the ESTABLISHED state. Each call to accept() removes the front entry of the queue. If there are no entries in the queue, the call to accept usually blocks. BSD source code assigns a length of so_qlen to this queue.

See See . for an illustration of the two queues.

Both queues have a limited number of entries. By calling listen() , the server is allowed to specify the size of the second queue for completed connections. If the server is for whatever reason unable to remove entries from the completed connection queue, the kernel is not supposed to queue any more connections.

Historically, the argument to the listen function specified the maximum number of entries for the sum of both queues. Many BSD-derived implementations multiply the argument with a fudge factor of 3/2. Up to and including Version 2.5.1, Solaris systems do not use the fudge factor, but add 1, while Solaris 2.6 does use the fudge factor, though with a slightly different rounding mechanism than the one BSD uses. With a backlog argument of 14, Solaris 2.5.1 servers can queue 15 connections. Solaris 2.6 servers can queue 22 connections.

Stevens shows that for busy servers the incomplete connection queue needs more entries than the completed connection queue. The only reason for specifying a large backlog value is to enable the incomplete connection queue to grow as SYN packets arrive from clients. Stevens shows that a moderately busy web server has an empty completed connection queue 99% of the time, but the incomplete connection queue needs 15 or less entries 98% of the time! A really busy web cache like Squid will need a large incomplete connection queue.

If the queues are full when a SYN arrives, it is dropped, in the hope that the client will resend it and find room in the queues then. Any data for an established connection that arrives before the connection is accept() ed should be stored in the socket buffer.

The system administrator is allowed to tweak and tune the various maxima of the queues with Solaris. There is a change in the available parameters between a (regular) Solaris system up to and including Version 2.5.1, and those systems which either are Solaris Version 2.6 and later, or have applied the TCP patch 103582-12 or above for 2.5.1 systems.

The old semantics contained just one tunable parameter, tcp_conn_req_max , which specified the maximum argument for listen() . The patched versions and Solaris 2.6 replaced this parameter with the two new parameters: tcp_conn_req_max_q0 and tcp_conn_req_max_q . A SunWorld (August 1997) article on Solaris 2.6 by Adrian Cockroft tells the following about the new parameters:

tcp_conn_req_max [has been] replaced. This value is well-known as it normally needs to be increased for Web servers in older releases of Solaris 2. It no longer exists in Solaris 2.6, and patch 103582-12 adds this feature to Solaris 2.5.1. The change is part of a fix that prevents denial of service from SYN flood attacks. There are now two separate queues of partially complete connections instead of one.

tcp_conn_req_max_q0 is the maximum number of connections with handshake incomplete. A SYN flood attack could only affect this queue, and a special algorithm makes sure that valid connections can still get through.

tcp_conn_req_max_q is the maximum number of completed connections waiting to return from an accept call as soon as the right process gets some CPU time.

In other words, the first specifies the size of the incomplete connection queue, while the second and third parameters assigns the maximum length of the completed connection queue. All three parameters are covered in the following list:

tcp_conn_req_max

Default 8 (max. 32), since 2.5 32 (max. 1024), recommended 128 <= x <= 1024 since 2.6 or 2.5.1 with patches 103630-09 and 103582-12 or above applied: see tcp_conn_req_max_q and tcp_conn_req_max_q0 .

The current parameter describes the maximum number of pending connection requests queued for a listening endpoint in the completed connection queue. The queue can only save the specified finite number of requests. If a queue overflows, nothing is sent back. The client will time out and (hopefully) retransmit.

The size of the completed connection queue does not influence the maximum number of simultaneous established connections, nor does it have any influence on the maximum number of clients a server can serve. With Solaris, the maximum number of file descriptors is the limiting factor for simultaneous connections, which just happens to coincide with the maximum backlog queue size.

From the viewpoint of TCP, those connections placed in the completed connection queue are in the TCP state ESTABLISHED , even though the application has not reaped the connection with a call to accept . Solaris offers the option of placing connections into the backlog queue as soon as the first SYN arrives, which is called eager listening . The three-way handshake will be completed as soon as the application accept() s the connection. The use of eager listening is not recommended except for experimentation systems.

Solaris systems previous to Version 2.5 have a maximum queue length of 32 pending connections. The length of the completed connection queue can also be used to decrease the load on an overloaded server: If the queue is completely filled, remote clients will be denied further connections. Sometimes this will lead to a "connection timed out" error message.

Naively, I assumed that a huge length might lead to a long service time on a loaded server. Stevens shows that the incomplete connection queue needs much more attention than the completed connection queue. But with tcp_conn_req_max , you have no option to tweak that particular length.

When tuning tcp_conn_req_max , always do it with regard to the values of rlim_fd_max and rlim_fd_cur . This is just a rule of thumb. Setting your listen backlog queue larger than the number of file descriptors available to you won't do you any good. A server shouldn't accept any further connections if it has run out of descriptors. Even though new connections won't be thrown away if you have a large backlog, a server might want to reduce the size to as many connections as can be serviced simultaneously. Again, you have to consider your average service time, too. A short service time implies that file descriptors will be recycled quickly.

There is a trick to overcome the hardcoded limit of 1024 with a patch. SunSolve shows this trick in connection with SYN flood attacks at http://sunsolve.sun.com/sunsolve/secbulletins/security-alert-136.txt . A greatly increased listen backlog queue may offer some small increased protection against this vulnerability. On this topic also look at the tcp_ip_abort_cinterval parameter. Better still, use the mentioned TCP patches, and increase the q0 length:

echo "tcp_param_arr+14/W 0t10240" | adb -kw /dev/ksyms /dev/mem

This patch is only effective on the currently active kernel, disappearing on the next boot. Usually you want to append the line above on the startup script /etd/init.d/inetinit . The shown patch increases the hard limit of the listen backlog queue to 10240. Only after applying this patch may you use values above 1024 for the tcp_conn_req_max parameter.

A further warning : changes to the value of the tcp_conn_req_max parameter in a running system will not take effect until each listening application is restarted. The backlog queue length is evaluated whenever an application calls listen(3N) , usually once during startup. Sending a HUP signal may or may not work; personally, I prefer to TERM the application and restart it manually or via startup script.

tcp_conn_req_max_q0

Since 2.5.1 with patches 103630-09 and 103582-12 or above applied: default 1024; since 2.6: default 1024, recommended 1024 <= x <= 10240.

After installing the mentioned TCP patches, or after installing Solaris 2.6, the parameter tcp_conn_req_max is no longer available. In its stead the new parameters tcp_conn_req_max_q and tcp_conn_req_max_q0 emerged. tcp_conn_req_max_q0 is the maximum number of connections with handshake incomplete, basically the length of the incomplete connection queue.

In other words, the connections in this queue are just being instantiated. A SYN was just received from the client; thus the connection is in the TCP SYN_RCVD state. The connection cannot be accept() ed until the handshake is complete, even if the eager listening is active.

To protect against SYN flooding, you can increase this parameter. Also refer to the parameter tcp_conn_req_max_q above. I believe that changes won't take effect unless the applications are restarted.

tcp_conn_req_max_q

Since 2.5.1 with patches 103630-09 and 103582-12 or above applied: default 128; since 2.6: default 128, recommended 128 <= x <= tcp_conn_req_max_q0 .

After installing the mentioned TCP patches, or after installing Solaris 2.6, the parameter tcp_conn_req_max is no longer available. Instead the new parameters tcp_conn_req_max_q and tcp_conn_req_max_q0 emerged. tcp_conn_req_max_q is the length of the completed connection queue.

In other words, connections in this queue of length tcp_conn_req_max_q have completed the three-way handshake of a TCP open . The connection is in the state ESTABLISHED . Connections in this queue have not yet been accept() ed by the server process.

On Solaris Version 2.5.1 and later, the netstat -s command reports for the counter tcpListenDrop the number of dropped connections due to a lack of space in the completed connection queue. If you get many drops, you might need to increase this parameter. Since connections can also be dropped because listen() specifies too small an argument, you have to be careful interpreting the counter value. Also refer to the parameter tcp_conn_req_max_q0 . Remember that changes won't take effect unless the applications are restarted.

tcp_conn_req_min

Since 2.6: default 1; recommended: don't touch.

This parameter specifies the minimum number of available connections in the completed connection queue for select() or poll() to return "readable" for a listening (server) socket descriptor.

Programmers should note that Stevens describes a timing problem, if the connection is RST between the select() or poll() call and the subsequent accept() call. If the listening socket is blocking (the default for sockets), it will block in accept() until a valid connection is received. While this seems no tragedy with a web server or cache receiving several connection requests per second, the application is not free to do other things in the meantime, which might constitute a problem.

Retransmission-Related Parameters

The retransmission timeout (RTO) values used by Solaris are far too aggressive for wide area networks, although they can be considered appropriate for local area networks. Sun thus did not follow the suggestions mentioned in RFC 1122. Newer releases of the Solaris kernel are correcting the values in question:

The recommended upper and lower bounds on the RTO are known to be inadequate on large internets. The lower bound SHOULD be measured in fractions of a second (to accommodate high speed LANs) and the upper bound should be 2*MSL, i.e., 240 seconds.

Besides the retransmit timeout value two further parameters, R1 and R2, may be of interest. These don't seem to be tunable via any Solaris interface that I know of:

The value of R1 SHOULD correspond to at least 3 retransmissions, at the current RTO. The value of R2 SHOULD correspond to at least 100 seconds.

[...]

However, the values of R1 and R2 may be different for SYN and data segments. In particular, R2 for a SYN segment MUST be set large enough to provide retransmission of the segment for at least 3 minutes. The application can close the connection (i.e., give up on the open attempt) sooner, of course.

Many internet servers that are running Solaris do retransmit segments unnecessarily often. The current condition of European networks means that a connection to the U.S. may take up to 2 seconds. All parameters mentioned in the first part of this section relate to each other!

As a starter, take this little example: Consider a picture with a size of 1440 bytes, LZW compressed, that is to be transferred over a serial link at 14400 bps and using a MTU of 1500. In the ideal case, only one PDU gets transmitted. The ACK segment can only be sent after the complete PDU is received. The transmission takes about 1 second. These values seem low, but they are meant as food for thought. Now consider something going awry:

tcp_rexmit_interval_initial

Default 500, since 2.5.1 3000, recommended >= 2000 (500 for special purposes).

This interval elapses before the first data sent is retransmitted due to a missing acknowledgment. Mind that this interval is used only for the first retransmission. The more international your server is, the larger you should make this interval.

Special LAN-only laboratory environments might be better off with 500 milliseconds or even less. If you are doing measurements relying on TCP (which is almost always a bad idea), you should consider lowering this parameter.

tcp_rexmit_interval_min

Default 200, recommended >= 1000 (200 for special purposes).

After the initial retransmission, further retransmissions will start after the tcp_rexmit_interval_min interval. BSD usually specifies 1500 milliseconds. This interval should be relative to the value of tcp_rexmit_interval_initial (e.g., some value between 50% and 200%). The parameter has no effect on retransmissions during an active open . (See the document on retransmissions on my web page.)

The tcp_rexmit_interval_min doesn't display any influence on connection establishment with Solaris 2.5.1. It does with 2.6, though. I have yet to research the influence on regular data retransmissions or FIN retransmissions.

tcp_ip_abort_interval

Default 120000, since 2.5 480000, recommended 600000.

This interval specifies how long retransmissions for a connection in the ESTABLISHED state should be tried before a RESET segment is sent. BSD systems default to 9 minutes.

tcp_ip_abort_cinterval

Default 240000, since 2.5 180000.

This interval specifies how long retransmissions for a remote host are repeated until the RESET segment is sent. What's different about the tcp_ip_abort_interval parameter is that this connection is about to be established--it has not yet reached the state ESTABLISHED . This value is interesting considering SYN flood attacks on your server. Proxy servers are doubly handicapped because of their Janus-like behavior (they behave like servers toward the downstream cache, like clients toward the upstream server).

According to Stevens, this interval is connected to the active open, e.g., the connect(3N) call. But according to SunSolve, the interval has an effect in both directions. A remote client can refuse to acknowledge an opening connection up to this interval. After the interval, a RESET is sent. The other way around works out, too: If the three-way handshake to open a connection is not finished within this interval, the RESET Segment will be sent. This can only happen if the final ACK went astray, which is a difficult test case to simulate.

To improve your SYN flood resistance, Sun suggests using an interval as small as 10000 milliseconds. This value has only been tested for the "fast" networks at Sun. The more international your connection is, the slower it will be, and the more time you should grant in this interval. Proxy servers should never lower this value (and should let Squid terminate the connection). Web servers are usually not affected, as they seldom actively open connections beyond the LAN.

tcp_rexmit_interval_max

Default 60000, RFC 1122 recommends 240000 (2MSL), recommended 1...2 * tcp_close_wait_interval since 2.6: default 240000.

All previously mentioned retransmission-related intervals use an exponential backoff algorithm. The wait interval between two consecutive retransmissions for the same PDU is doubled starting with the minimum.

The tcp_rexmit_interval_max interval specifies the maximum wait interval between two retransmissions. If changing this value, you should also give the abort interval an inspection. The maximum wait interval should only be reached shortly before the abort interval timer expires. Additionally, you should coordinate your interval with the value of tcp_close_wait_interval .

tcp_deferred_ack_interval

Default 50, BSD 200, recommended 200 or 500.

This parameter specifies the timeout before sending a delayed ACK . The timeout is to see if the ACK ing party has any data that can be sent along with the ACK . See section 19.3 of Stevens, Volume 1. The value should not be increased above 500, as required by RFC 1122. This value is of great interest for interactive services. A small number will increase the responsiveness of a remote service (telnet, X11), while a larger value can decrease the number of segments exchanged.

This parameter might also help HTTP servers that transmit small amounts of data after a very short retrieval time. With a heavy-duty servers or in a laboratory banging environment, you might encounter service times answering a request which are well above 50 milliseconds. An increase to 500 milliseconds might lead to fewer PDUs transferred over the network because TCP is able to merge the ACK with data. Increases beyond 500 milliseconds should not even be considered.

Please note that Solaris recognizes the initial data phase of a connection. An initial ACK (not SYN) is not delayed. Therefore, a request for a web service (both server and proxy) which does not fit into a single PDU can be transmitted faster. Web benchmarks will show this as improved performance. Also check the tcp_slow_start_initial parameter.

tcp_deferred_acks_max

Since 2.6: default 8.

This parameter has something to do with the number of delayed acknowledgments or the number of bytes to be collected. My guess is that this parameter specifies the number of outstanding ACK s in interactive transfer mode. In this case, tiny amounts of data are flowing in both directions. In contrast to my prior statement, you need not give this parameter a look when tuning bulk transfers, because its impact is on interactive transfers.

Good values for retransmission tuning don't beam into existence from a white source. Rather, you should carefully plan an experiment to get decent values. Intervals from another site do not carry on without change to another Solaris system. But they might give you an idea where to start when choosing your own values.

This next part looks at a few parameters having to do with retransmissions as well:

tcp_slow_start_initial

Since 2.5.1 with patch 103582-15 applied: default 1; since 2.6: default 1, recommended 2 for web services.

This parameter provides the slow-start bug discovered in BSD and Windows TCP/IP implementations for Solaris. More information on the topic can be found on the servers of Sun and in TCP/IP Illustrated, Volume 3--T/TCP, HTTP, NNTP, Unix Domain Sockets ; by Richard Stevens (Addison-Wesley, 1994).

To summarize the effect, a server starts sending two PDUs at once without waiting for an ACK . This is due to the ACK from connection initiation being counted as data ACK --compare with See . . The client immediately acknowledges both PDUs, thus undermining network congestion avoidance algorithms. The slow-start algorithm does not allow this behavior; see RFC 2001.

Setting the parameter to 2 allows a Solaris machine to behave as if it had the slow-start bug, too. The IETF is said to want to change the slow-start algorithm, so that this bug will be turned into a feature. Sun also warns:

It's still conceivable, although rare, that on a configuration that supports many clients on very slow links, the change might induce more network congestion. Therefore the change of tcp_slow_start_initial should be made with caution. [...] Future Solaris releases are likely to default to 2.
Path MTU Discovery

Whenever a connection is about to be established, the three-way handshake opens negotiation, and the segment size used will be set to the minimum of either the smallest MTU of an outgoing interface or the Maximum Segment Size (MSS) announced by the peer. If the remote peer does not announce a MSS, usually the value 536 will be assumed. If path MTU discovery is active, all outgoing PDUs have the IP don't fragment (DF) option set.

If the ICMP error message "fragmentation needed" is received, this means that a router on the way to the destination needed to fragment the PDU, but was not allowed to do so. Therefore, the router discarded the PDU and sent back the ICMP error. Newer router implementations enclose the needed MSS in the error message. If the needed MSS is not included, the correct MSS must be determined by trial and error.

Because the Internet is a packet switching network, the route a PDU travels along a TCP virtual circuit may change with time. For this reason, RFC 1191 recommends rediscovering the path MTU of an active connection after 10 minutes. Improvements in the route can be noticed only by repeated rediscoveries. Unfortunately, Solaris aggressively tries to rediscover the path MTU every 30 seconds. While this is OK for LAN environments, it is grossly impolite behavior in WANs. Since routes may not change that often, aggressive repetitions of path MTU discovery lead to unnecessary consumption of channel capacity and elongated service times.

Path MTU discovery is a far-reaching and controversial topic among ISPs. Remember that MTU discovery is at the foundation of IPv6. The Pittsburgh Supercomputing Center (PSC) tuning page, at http://www.psc.edu/networking/perf_tune.html , argues for path MTU discovery, especially if you maintain a high-speed or long-delay (e.g., satellite) link.

My recommendation is not to use the defaults of Solaris versions previous to Version 2.5. Please use path MTU discovery, but tune your system to be RFC-conformant. You may also want to switch off path MTU discovery altogether, although there are few situations where this is necessary.

I was made aware that in certain circumstances, bridges connecting data link layers of differing MTU sizes defeat MTU discovery, and I have to further investigate this matter. If a frame with maximum MTU size is to be transported into network with a smaller MTU size, it is truncated silently. A bridge does not know anything about the upper protocol levels: a bridge neither fragments IP nor sends an ICMP error.

There are workarounds, and tcp_mss_def is one of them. Setting all interfaces to the minimum shared MTU might help, at the cost of losing performance on the larger MTU network. Using what RFC 1122 calls an IP gateway is a possible, yet expensive, solution:

ip_ire_pathmtu_interval

Default 30000, since 2.5 600000, recommended 600000.

This timer determines the interval at which Solaris rediscovers the path MTU. An extremely large value will evaluate the path MTU only once, at connection establishment.

ip_path_mtu_discovery

Default 1, recommended 1.

This parameter switches path MTU discovery on or off. If you enter a 0 here, Solaris will never try to set the DF bit in the IP option unless your application explicitly requests it.

tcp_ignore_path_mtu

Default 0, recommended 0.

This is a debug switch. When activated, this switch will have the IP or TCP layer ignore all ICMP "fragmentation needed" error messages. By activating this switch, you will achieve the opposite of what you intended.

tcp_mss_def

Default 536, recommended >= 536.

This parameter determines the default MSS for non-local destinations. For path MTU discovery to work effectively, this value can be set to the MTU of the most-used outgoing interface decreased by a 20-byte IP header and a 20-byte TCP header--if and only if the value is bigger than 536.

Further Advice, Hints, and Remarks

This section covers a variety of topics, starting with various TCP timers, that do not relate to previously mentioned issues. The second subsection throws a quick glance at some erratic behavior. The final subsection looks at a variety of parameters that deal with the reservation of resources.

Common TCP Timers

This section covers three important TCP timers. First I will have a look at the keep-alive timer. This timer is rather controversial, and some versions of Solaris implement it incorrectly. The next parameter limits the twice maximum segment lifetime (2MSL) value, which is connected to the time a socket spends in the TCP state TIME_WAIT . The final entry looks at the time spend in the TCP state FIN_WAIT_2 .

tcp_keepalive_interval

Default 7200000, recommended 0 <= x <= ·

This is one of the most controversial values in talking with people about appropriate values. The interval specified with this key must expire before a keepalive probe can be sent. Keepalive probes are described in the host requirements RFC 1122: if a host chooses to implement keepalive probes, it must enable the application to switch them on or off for a connection, and keepalive probes must be switched off by default.

Keepalives can terminate a perfectly good connection (as far as TCP/IP is concerned), cost money, and use up transmission capacity (commonly called bandwidth, which is actually something completely different). Determining whether a peer is alive should be a task of the application that should be kept on the application layer. Only if you run into the danger of keeping a server in the ESTABLISHED state forever and using up precious server resources should you switch on keepalive probes.

It is of no importance to the argument whether the server is threaded, preforked or just plain forked. Web servers' work is transaction-oriented, as shown in the following simplified description:

The client (browser) initiates a connection (active open).

1. The client forwards its query (request).

2. The server (daemon) answers (response).

3. The server terminates the connection (active close).

Common implementations need to exchange 9 or 10 TCP segments per HTTP connection. The keepalive option as an HTTP 1.0 protocol and extensions can be regarded as a hack . Persistent connections are a different matter, and are not shown here. Most people still use HTTP 1.0.

The keepalive timer becomes significant for web servers if in step 1 the client crashes or terminates without the server knowing about it. This condition can sometimes be forced by quickly pressing the Stop button of Netscape or the logo of Mosaic. Thus the keepalive probes do make sense for web servers. HTTP proxies look like servers to the browser, but they look like clients to the server they are querying. Due to their server-like interface, the conditions for web servers are true for proxies, as well.

With an implementation of keepalive probes working correctly, a very small value can make sense when trying to improve web servers. In this case, you have to make sure that the probes stop after a finite time if a peer does not answer. Solaris versions up to and including Version 2.5 have a bug and send keepalive probes forever. They seem to want to elicit some response, like a RST or some ICMP error message from an intermediate router, but they never allow for the destination simply being down. Is this fixed with 2.5.1? Is there a patch available against this misbehavior? I don't know, maybe you can help me.

I am sure that this bug is fixed in 2.6 and that it is safe to use a small value like 10 minutes. Squid users should synchronize their cache configuration accordingly. There are some Squid timeouts dealing with an idle connection.

tcp_close_wait_interval

Default 240000 (according to RFC 1122, 2MSL), recommended 60000, possibly lower.

As Stevens repeatedly states in his books, the TIME_WAIT state is your friend. You should not desperately try to avoid it; rather, try to understand it. The maximum segment lifetime (MSL) is the maximum interval a TCP segment may live in the Net. Thus, waiting twice this interval ensures that there are no leftover segments coming to haunt you. This is what the 2MSL is about. Afterwards, it is safe to reuse the socket resource.

The parameter specifies the 2MSL according to the four-minute limit specified in RFC 1122. With knowledge about current network topologies and the strategies to reserve ephemeral ports, you should consider a shorter interval. The shorter the interval, the faster precious resources like ephemeral ports are available again.

A top search engine implementor recommends a value of 1000 milliseconds to customers. Personally, I believe this is too low for a regular server. A loaded search engine is a different matter altogether, but now you see why some people start tweaking their systems. I tend to use a multiple of the tcp_rexmit_interval_initial interval. The current value of tcp_rexmit_interval_max should also be considered in this case--even though retransmissions are unconnected to the 2MSL time. A good starting point might be the double RTT to a very remote system (e.g., Australia for European sites). Alternately, a German commercial provider of my acquaintance uses 30000, the smallest interval recommended by BSD.

tcp_fin_wait_2_flush_interval

BSD 675000, default 675000, recommended 67500 (one zero less).

This value seems to describe the (BSD) timer interval which prohibits a connection from staying in the FIN_WAIT_2 state forever. FIN_WAIT_2 is reached if a connection closes actively. The FIN is acknowledged, but the FIN from the passive side hasn't arrived yet--and maybe never will.

Usually, web servers and proxies actively close connections as long as you don't use persistent connections, and even those are closed eventually. Apart from that, HTTP 1.0-compliant servers and proxies close connections after each transaction. A crashed or misbehaving browser, however, may cause a server to use up a precious resource for a long time.

You should consider decreasing this interval if netstat -f inet shows many connections in the state FIN_WAIT_2 . The timer is used only if the connection is really idle. Keep in mind that after a TCP half-close, simplex data transmission is still available towards the actively closing end. TCP half-closes are not yet supported by Squid, though many web servers do support them (certain HTTP drafts suggest an independent use of TCP connections). Nevertheless, as long as the client sends data after the server actively half-closes an established connection, the timer is not active.

Sometimes, a Squid proxy running on Solaris 2.5.1 confuses the system utterly. A great number of connections, to a varying degree, are in CLOSE_WAIT , for reasons that are beyond me. During this phase the proxy is virtually unreachable for HTTP requests, though it still answers ICP requests. Although lowering the value for the tcp_close_wait_interval fixes only symptoms, not the cause, it may help to overcome periods of erratic behavior faster than the default. What is needed is some way to influence the CLOSE_WAIT interval directly.

Erratic IPX Behavior

I have noticed that Solaris versions previous to Version 2.6 behave erratically under some conditions if the IPX Ethernet MTU of 1500 is used. Maybe there is an error in the frame assembly algorithm. If you limit yourself to the IEEE 802.3 MTU of 1492 bytes, the problem does not seem to appear. A sample startup script available from my web page can be used in /etc/rc2.d to change the MTU of Ethernet interfaces after their initialization. Remember to set the MTU for every virtual interface, too!

With a patched Solaris 2.5.1 or Solaris 2.6, erratic IPX behavior does not seem to appear. Limiting your MTU to a non-standard value might introduce problems with truncated PDUs in certain admittedly very special environments. Thus you may want to refrain from using the startup script from my web page (always called second script in this document).

Additionally, I strongly suggest the use of a file /etc/init.d/your-tune , also available from my web page, which changes the tunable parameters. /etc/rcS.d/S31your-tune is a hard link to this file. The script will be executed during bootup when the system is in single-user mode . A killscript is not necessary. The section about startup scripts below reviews this topic in greater depth.

Windows, Buffers, and Watermarks

This section is about windows, buffers, and watermarks. It should still be considered a work in progress. The explanations available to me were very confusing, though the new Stevens helped to clear up a few things. If you have corrections to this section, please let me know and contribute to an update of the page. Many readers will thank you!

Here is just a short trip through the network layer to explain what happens where. Your application can send any size data to the transport layer, which is either UDP or TCP. The socket buffers are implemented on the transport layer. Depending on your choice of transport protocol, different actions are taken on this level.

TCP

All application data is copied into the socket buffer. If there is insufficient room, the application will be put to sleep. From the socket buffer, TCP will create segments. No chunk exceeds the MSS.

Only when the data has been acknowledged from the peer instance can the data be removed from the socket buffer. For slow connections, this implies that some data may occupy the buffer for a very long time.

UDP

The socket buffer size of UDP is simply the maximum size datagram UDP is able to transmit. Larger datagrams ought to elicit the EMSGSIZE error response from the socket layer. With UDP implementing an unreliable service, there is no need to keep the datagram in the socket buffer.

Please assume that there is not really a socket buffer for UDP. This really depends on the operating system, but most systems might want to copy the user data to some kernel storage area.

The IP layer needs to fragment chunks which are too large. Among the reasons TCP prechunks its segments is the need to avoid fragmentation. IP searches the routing tables for the appropriate interface in order to determine the fragment size and interface.

If the output queue of the datalink layer interface is full, the datagram will be discarded and an error will be returned to IP and back to the transport layer. If the transport protocol was TCP, TCP will try to resend the segment at a later time. UDP should return the ENOBUFS error, but some implementations don't.

To determine the MTU sizes, use the ifconfig -a command. We will need the MTUs for some calculations to be done later in this section. With IPv4, you can determine the MSS from the interface MTU by subtracting 20 bytes for the TCP header and 20 bytes for the IP header. This calculation is done repeatedly in the following text:

$ ifconfig -a

lo0: flags=849 <UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232

inet 127.0.0.1 netmask ff000000

el0: flags=863 <UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 130.75.215.xxx netmask ffffff00 broadcast 130.75.215.255

ether xx:xx:xx:xx:xx:xx

hme0: flags=863 <UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 130.75.5.xxx netmask ffffff00 broadcast 130.75.5.255

qaa0: flags=863 <UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 9180

inet 130.75.214.xxx netmask ffffff00 broadcast 130.75.214.255

ether xx:xx:xx:xx:xx:xx

fa0: flags=842 <BROADCAST,RUNNING,MULTICAST> mtu 9188

inet 0.0.0.0 netmask 0

ether xx:xx:xx:xx:xx:xx

I removed the uninteresting things. hme0 is the regular 100Mbps Ethernet interface. The 10Mbps Ethernet interface is called le0 . el0 is the ATM LAN emulation (LANE) interface. qaa0 is the ATM classical IP (CLIP) interface. fa0 is the interface that supports Fore's proprietary implementation of ATM. Fore is the vendor of the installed ATM card. As far as I know, you can use this interface to build PVCs or, if you are also using Fore switches, SVCs. You see an unconfigured interface there.

The window sizes for sending and receiving TCP segments and, strange as it may seem, for UDP datagrams, can be tuned with Solaris. With the help of the netstat command, you can obtain an output similar to the following one. The data was obtained on a server which runs a Squid with five DNS children. Since the interprocess communication is accomplished via localhost sockets, you see both the client side and the server side of each DNS child socket:

$ netstat -f inet

TCP

Local Address Remote Address Swind Send-Q Rwind Recv-Q State

-------------------- -------------------- ----- ------ ----- ------ -------

blau-clip.ssh challenger-clip.1023 57344 19 63980 0 ESTABLISHED

localhost.38437 localhost.38436 57344 0 57344 0 ESTABLISHED

localhost.38436 localhost.38437 57344 0 57344 0 ESTABLISHED

localhost.38439 localhost.38438 57344 0 57344 0 ESTABLISHED

localhost.38438 localhost.38439 57344 0 57344 0 ESTABLISHED

localhost.38441 localhost.38440 57344 0 57344 0 ESTABLISHED

localhost.38440 localhost.38441 57344 0 57344 0 ESTABLISHED

localhost.38443 localhost.38442 57344 0 57344 0 ESTABLISHED

localhost.38442 localhost.38443 57344 0 57344 0 ESTABLISHED

localhost.38445 localhost.38444 57344 0 57344 0 ESTABLISHED

localhost.38444 localhost.38445 57344 0 57344 0 ESTABLISHED

The columns titled with Swind and Rwind contain values for the size of the respective send and receive windows . On the other hand, an application can change the size of the socket layer buffers with calls to setsockopt , e.g., with the parameter SO_SNDBUF or SO_RCVBUF . Windows and buffers are not interchangeable. Rather, the maximum and default socket buffer sizes are tunable with the high watermark of Solaris.

Squid users should note the following behavior seen with Solaris 2.6. The default socket buffer sizes detected during configuration phase are directly connected to the values of tcp_recv_hiwat , udp_recv_hiwat , tcp_xmit_hiwat , and tcp_xmit_hiwat . Also note that enabling the hit object feature still limits hit object size to 16384 bytes, regardless of what your system is able to achieve.

The following is output from a Squid 1.1.19 configuration script on a Solaris 2.6 host with the previously mentioned parameters all set to 64000. Please note that these parameters might not represent the optimal sizes:

checking Default UDP send buffer size... 64000

checking Default UDP receive buffer size... 64000

checking Default TCP send buffer size... 64000

checking Default TCP receive buffer size... 64000

Buffers and windows are very important if you link via satellite. Due to the high date rate but the extremely high round-trip delays of a satellite link, you will need very large TCP windows and possibly the TCP timestamp option. Only RFC 1323 conformant systems will achieve these ends. In other words, get a Solaris 2.6. For 2.5 systems, RFC 1323 compliance can be purchased as a Sun Consulting Special.

The network research laboratory of the German research network provider did measurements on satellite links. The round-trip time (RTT) was about 500 milliseconds. A regular system was able to transmit 600kbps whereas a RFC 1323 conformant system was able to transmit about 7Mbps. Only bulk data transfer will do that for you.

Squid users beware: as long as Squid does not implement HTTP 1.1 persistent connections, you will not get decent HTTP transmissions via satellite. The average cached object size is about 13 kilobytes, thus you almost never get past the TCP slow start. While this may or may not be a big deal with terrestrial links, you will never be able to fill a satellite pipe to a satisfactory degree. Doing things in parallel might help. Only when reaching TCP congestion avoidance will you see any filling of the pipe.

Window sizes are important for maximum throughput calculations, too. As Stevens shows, you cannot go faster than the window size offered by the received, divided by the RTT. The lower your RTT, the faster you can transmit. The larger your window, the faster you can transmit. If you intend to change your window sizes to the maximum, you might want to give tcp_deferred_acks_max another look.

Every socket also has a low watermark, which is important for the select() and poll() functions. The low watermark for receiving is 1 byte for both TCP and UDP. The low watermark for sending is the amount of space that must exist in the socket send buffer for select or poll to return the descriptor as writable. The value can be adjusted with Solaris.

tcp_cwnd_max

Default 32768, since 2.? 65535, recommended 65535 for Solaris <= 2.5.1; since 2.6 262144 (finally!), no recommendations.

This congestion window is opened as large as possible with any Solaris up to 2.5.1. A change to this value is only necessary for older Solaris systems. The Solaris 2.6 default looks reasonable, but you might need to increase this further. Note that the window scale option is announced only during connection creation and your maximum window size is 1GByte (1,073,725,440 bytes). Also, the window scale option is employed during the connection only if both sides support it.

tcp_recv_hiwat

Default 8192, recommended 16384 <= x <= 64000;
Solaris 2.6 LFN bulk data transfer 131071 or above.

This parameter determines the maximum size of the initial TCP reception buffer. The specified value will be rounded up to the next multiple of the MSS. From this the advertised window size is determined, the size of the reception window advertised to the remote peer.

The recommended value depends on the size of the MTU chosen for local interfaces: either 45 ¥ 1452 or 44 ¥ 1460. This assumes you are using 10Mbps or 100Mbps Ethernet with either IPX or 802.3 encapsulation. Squid users will be interested in this value with regards to the socket buffer size the Squid auto configuration program finds.

The previous output shows an Rwind value of 63980 = 7 ¥ 9140. 9140 is the MSS of the ATM classical IP interface in host blau . The interface itself uses a MTU of 9180. For the standard built-in 10Mbps or 100Mbps IPX Ethernet, you get a MTU of 1500 on the outgoing interface, which yields an MSS of 1460. The value of 57344 in the next Rwind line points to the lo0 (loopback) interface, MTU 8232, MSS 8192 and 57344 = 7 ¥ 8192.

Starting with Solaris 2.6, values above 65535 should be possible; see the window scale option from RFC 1323. You might need to reboot your workstation in order to have the changes take effect, but then again, you might not.

For HTTP, I don't see the need to increase the buffer above 64k. Imagine a cache servicing 1024 simultaneous connections with HTTP 1.0, e.g., Squid 1.1. If the TCP high watermarks of your system are tuned to 64k, you would need 128M just for your TCP buffers! Squid seems to use the socket option SO_RCVBUF to limit its memory hunger during runtime to 16k.

Only peer hosts implementing RFC 1323 will benefit from buffer sizes above 65535! If one host does not implement the window scale option, the window is still limited to 64k.

tcp_recv_hiwat_minmss

Default 4.

This parameter influences the minimum size of the input buffer. The reception buffer is at least as large as this value multiplied by the MSS. The real value is the maximum of tcp_recv_hiwat rounded up to the next MSS and tcp_recv_hiwat_minmss multiplied by the MSS.

udp_recv_hiwat

Default 8192, recommended 16384 <= x <= 64000.

This is the highwater mark for the UDP reception buffer size. This value may be of interest for Squid proxies, which use ICP extensively. Please read the explanations for tcp_recv_hiwat . Squid users will want at least 16384, especially if you are planning on using the hit object feature of Squid.

Remember, if you don't set your socket buffer explicitly with a call to setsockopt() , your default reception buffer will have about this size. Arriving datagrams of a larger size might be truncated or completely rejected! Some systems don't even notify your receiving application.

tcp_xmit_hiwat

Default 8192, recommended 16384 <= x <= 64000;
Solaris 2.6 LFN bulk data transfer 131071 or above.

This parameter influences a heuristic that determines the size of the initial send window. The actual value will be rounded up to the next multiple of the MSS, e.g., 8760 = 6 ¥ 1460. The recommended value depends on the size of the MTU for local interfaces: either 45 ¥ 1452 or 44 ¥ 1460. Also read the section on tcp_recv_hiwat .

The netstat output displayed earlier in this section shows a Swind of 57344 = 7 ¥ 8192. For the standard built-in 10Mbps or 100Mbps IPX Ethernet, you get an MTU of 1500 on the outgoing interface, which yields a MSS of 1460.

Starting with Solaris 2.6 values above 65535 should be possible; see the window scale option from RFC 1323. You might need to reboot your workstation in order to have the changes take effect, but then again, you might not.

For HTTP, I don't see the need to increase the buffer above 64k. Imagine a cache servicing 1024 simultaneous connections with HTTP 1.0, e.g., Squid 1.1. If the TCP high watermarks of your system are tuned to 64k, you would need 128M just for your TCP buffers! Squid does not seem to use the socket option SO_SNDBUF to limit its memory hunger during runtime. This might not be too bad, because the send buffer has to keep a copy of all unacknowledged segments. Thus it should have twice the size of the send buffer.

Only peer hosts implementing RFC 1323 will benefit from buffer sizes above 65535! If one host does not implement the window scale option, the window is still limited to 64k. Host challenger supports CLIP on ATM, but it does not support the window scale option. Therefore, I got buffers below 64k even after I increased the related TCP high watermarks to 128k.

udp_xmit_hiwat

Default 8192, recommended 16384 <= x <= 64000.

This refers to the high watermark for send buffers and may be of interest for proxies using ICP extensively. Please refer to the explanations for tcp_xmit_hiwat . Squid users will want at least 16384, especially if you are planning on using the hit object feature of Squid.

tcp_xmit_lowat

Default 2048, no recommendations.

This parameter refers to the amount of data that must be available in the TCP socket send buffer for select or poll to return writable for the connected file descriptor.

Usually, there is no need to tune this parameter. Applications can use the socket option SO_SNDLOWAT to change this parameter on a process local basis.

udp_xmit_lowat

Default 1024, no recommendations.

This parameter refers to the amount of data that must be available for select or poll to return writable for the connected file descriptor. Since UDP does not need to keep datagrams and thus needs no socket buffer, the socket will always be writable as long as the socket send buffer size value is greater than the low watermark. Thus it does not really make much sense to wait for a datagram socket to become writable unless you constantly adjust the send buffer size.

Usually there is no need to tune this parameter. Applications can use SO_SNDBUF and SO_SNDLOWAT to change the send buffer size and low watermark respectively on a process local basis.

tcp_max_buf

Default 262144, recommended: see text.
Since 2.6 1048576, recommended: see text.

udp_max_buf

Default 262144 (since 2.5), recommended: see text.

This value refers to the default maximum socket buffer size. The value ought to be adjusted according to the settings of the previous parameters. For many paths, this is not enough, and must be increased. Without RFC 1323 large windows , the application is not allowed to buffer more than 64kB in the network, which is inadequate for almost all high-speed paths. Yes, you can use the network as a buffer. You can calculate the capacity of this buffer by multiplying the bandwidth of your path by the RTT. The result is commonly called the bandwidth-delay-product .

When using many connections, like Squid, possibly with an enlarged socket buffer size (see tcp_xmit_hiwat and tcp_recv_hiwat), you might want to increase the TCP value. On heavily loaded servers, a decrease of this value may decrease the load at the cost of the service time--definitely not recommended.

Tuning Your System

Things to Watch

Did you reserve enough swap space? You should have at least as much swap as you have main memory. If you have little main memory, then you should have double that amount as swap . Do not be fooled by the result of the vmstat command--read the manpage and realize that the small value for free memory shown there is (usually) correct.

With Solaris there seems to exist a difference between virtually generated processes and real processes. The latter are extremely dependent on the amount of virtual memory. To test the number of both kinds of processes, try a small program of mine, testpid.c , available from my web page. Start it at the console without starting the X Window System, and not as root. The first value is the hard limit of processes, and the second value the number of processes you can really create given your virtual memory configuration. Tweaking your ulimit values may or may not help.

General Entries in the File /etc/system

The file /etc/system contains various very important configurable parameters for your system. You can use these tunings to give a heavily loaded system more resources of a certain kind. Unfortunately, these changes won't take effect until the next reboot.

In Sun Performance and Tuning , Adrian Cockroft warns against transporting an /etc/system from one system onto another, or even worse, onto another hardware platform:

Clean out your /etc/system when you upgrade.

The most frequent changes are limited to the number of file descriptors, because the socket API uses file descriptors for handling Internet connectivity. You may want to look at the hard limit of file handles available to you. Proxies like Squid have to count twice for each connection: open request descriptors and either an open file or an open forwarding request descriptor.

You are able to influence the tuning of file descriptors with the reserved word set . Use a whitespace to separate the key from the keyword. Use an equals sign to separate the value from its key. There are a few examples in the comments of the file.

Please, before you start, make a backup copy of your init ial /etc/system . The backup should be located on your root filesystem. Thus, if some parameters fail, you can always supply the alternative, original system file on the boot prompt. The following shows two typically entered parameters:

* these are the defaults of the system

set rlim_fd_max=1024

set rlim_fd_cur=64

Sun does not make any guarantees for the correct working of your system if you use more than 4096 file descriptors.

If you experience SEGV core dumps from your select(3c) system call after increasing your file descriptors above 4096, you have to recompile the affected programs. In particular, the select(3c) call is known to the Squid users for its bad temper concerning the maximum number of file descriptors. Sun remarks on this topic:

The default value for FD_SETSIZE (currently 1024) is larger than the default limit on the number of open files. In order to accommodate programs that may use a larger number of open files with select() , it is possible to increase this size within a program by providing a larger definition of FD_SETSIZE before the inclusion of <sys/types.h>.

I tested Sun's suggestion, and a friend of mine tried it with Squid caches. The result was a complete success or disaster both times, depending on your point of view. If you really need to access file descriptors above 1024, don't use select() ; use poll() instead. poll() is supposed to be faster with Solaris, anyway. A different source mentions that the redefinition workaround mentioned above works satisfactorily; not for me, nor with Squid.

Some of these tricks are from http://www.gl.umbc.edu/~vijay/solaris/solartune.html . I am of the opinion that these pages are not as up-to-date as they could be.

Many parameters of interest can be determined using the sysdef -i command. Please keep in mind that many values are in hexadecimal notation without the "0x" prefix. Another program that is very good for looking at your system's configuration is sysinfo . Refer to the manpages to learn how to invoke this program.

rlim_fd_cur

Default 64, recommended >= 1024.

This parameter defines the soft limit of open files you can have. The currently active soft limit can be determined from a shell with something like:

ulimit -Sn

Use at your own risk values above 1024, especially if you are running old binaries. A value of 4096 may look harmless enough, but may still break old binaries.

Another source mentions that using more than 8192 file descriptors is discouraged. It suggests that you ought to use more processes if you need more than 4096 file descriptors. On the other hand, an ISP of my acquaintance is using 16384 descriptors to his satisfaction.

The predicate rlim_fd_cur <= rlim_fd_max must be fulfilled.

rlim_fd_max

Default 1024, recommended >=4096.

This parameter defines the hard limit on the number of open files. For a Squid and most other servers, regardless of TCP or UDP, the number of open file descriptors per user process is among the most important parameters. The number of file descriptors limits the number of connections you have in parallel. You can find out the value of your hard limit on a shell with something like:

ulimit -Hn

You should consider a value of at least 2 ¥ tcp_conn_req_max , and you should provide at least 2 ¥ rlim_fd_cur . The predicate rlim_fd_cur <= rlim_fd_max must be fulfilled.

Use values above 1024 at your own risk. Sun does not make any warranty for the workability of your system if you increase this above 1024. Squid users of busy proxies will have to increase this value, though. A good start seems to be 16384 <= x <= 32768. Remember to change the Makefile for Squid to use poll() instead of select() . Also remember that each call of configure will change the Makefile back, if you didn't change Makefile.in .

maxusers

Default 249 ~= Megs RAM (Ultra-2/2 CPUs/256 MB), min 8, max 2048, no recommendations.

This parameter determines the size of certain kernel data structures that are initialized at startup. There is strong indication that the default is determined from the main memory in megs. It might also be a function of the available memory and/or architecture.

The defaults of the parameters max_nprocs , maxuprc , ufs_ninode , ncsize and ndquot will be determined from this parameter's value. The greater the number you choose for maxusers , the greater the number of the mentioned resources. The relation is strictly proportional: a doubling of maxusers will (more or less) double the other resources.

Adrian Cockroft advises against setting maxusers . The kernel uses a lot of space while keeping track of RAM usage within the system; therefore, it might need to be reduced on systems with gigabytes of main memory.

max_nprocs

Default 3994 (Ultra-2/2 CPUs/256 MB), no recommendations.

This is the system-wide number of processes available. You should leave sufficient space to the parameter maxuprc . The value of this parameter is influenced by the setting of maxusers .

maxuprc

Default -5 (here: 3989), no recommendations.

This parameter describes the number of processes available to a single user. The actual value is determined from max_nprocs , which is itself determined by maxusers . The negative value seems to be a relative distance with regards to max_nprocs , but I haven't been able to test this yet.

ncsize

Default 4323 = 17 * maxusers + 90 (with maxusers 249), min 226, max 34906, no recommendations.

This parameter specifies the size of the directory name lookup cache. A large directory name lookup cache size significantly helps NFS servers that have a lot of clients. On other systems, the default is adequate.

I don't know about the ties to ufs_ninode , but the formula is the same. The current value is determined by maxusers .

I have heard from a few people who increase ncsize to 30000 when using the Squid webcache. Image, a Squid, uses 16 top-level directories and 256 second-level directories. Thus, you need over 4096 entries just for the directories. It looks as if webcaches and news servers that store data in files generated from a hash need to increase this value for efficient access. Twice the default should be a good starting point. You may want to increase ufs_ninode by the same size.

bufhwm

Default 2% of main memory, no immediate recommendations.

Now, considering the SVR3 buffer cache described by Maurice Bach, this parameter specifies the maximum memory size allowed for the buffer cache. The 0 value reported by sysinfo says to take 2% of the main memory for buffer caches. sysdef -i shows the size in bytes taken for the buffer cache.

I have seen Squid administrators increase this value up to 10%. If you change this value, you have to enter the number of kilobytes you want for the buffer cache.

use_mxcc_prefetch

Default 0 (sun4d) or 1 (sun4m), recommended: see text.

Adrian Cockroft explains this parameter in his article at http://www.sun.com/sunworldonline/ , "What Are the Tunable Kernel Parameters for Solaris 2?" The parameter determines the external cache controller prefetches. You have to know your workload: applications with extensive floating point arithmetic will benefit from prefetches, thus the parameter is turned on for personal workstations. On random access databases with little or no need for floating point arithmetic, the prefetch will likely get in the way; therefore, it is turned off on server machines. It looks as if it should be turned off on dedicated Squid servers.

Some services use a multitude of cache files, like Squid or some news servers where names (URLs or articles) are mapped by a hash function to a shallow directory tree, helping the buffer cache and inode caches of the host file system (compared to using unlimited subdirectories like the CERN cache). As is well known in software engineering, the speedup achieved by using the right algorithm usually far exceeds anything you can achieve by fiddling with the hardware or tweaking system parameters. Thus, a new storage scheme for mapped caches should provide food for thought. See http://www.iaehv.nl/users/devet/squid/new_store/ .

100Mbit Ethernet-Related Entries

Mr. Nebel and Mr. Hüsemann were kind enough to give me a few hints concerning 100Mbit Ethernet interfaces and Solaris. It looks as if these cards default to half-duplex operations. In order to switch to full duplex mode, make sure your router can also run full duplex:

hme:hme_adv_100fdx_cap

Default 0, recommended 1.

This parameter switches on full duplex mode. Only use this parameter together with the next option.

hme:hme_adv_100hdx_cap

Default 1, recommended 0.

This parameter switches off half-duplex mode. It must be used together with the previous parameter.

hme:hme_adv_autoneg_cap

Default 1.

This parameter determines whether the Sun workstation should automatically negotiate the 100Mbit with the router. Usually, Cisco routers also do auto-negotiation, thus it may be necessary to set this switch to 0.

A few mistakes in setting up 100Mbit interfaces result in a downgrade to 10Mbit Ethernet. Check at all available endpoints whether you are really getting the data rate you are expecting.

How to Find Further Entries

There are thousands of further items you can adjust. Every module that has a device in the /dev directory and a module file somewhere in the kernel tree underneath /kernel can be configured with the help of ndd . Whether you have to have superuser privileges depends on the access mode of the device file.

For instance, there exists a device /dev/hme and a kernel module /kernel/drv/hme . This driver is connected, as you might know, to the 100Mbit Ethernet interface. If you want to know what value you can tweak, you can ask ndd :

ndd /dev/hme ?

Of course, you can change only entries marked for read and write. If you have tweaked enough and want to store some configuration as a default at boot time, you can enter your preferred values into the /etc/system file. Just prefix the key with the module name and separate both with a colon. You saw this earlier in the subsection on 100Mbit Ethernet and the System V IPC page.

There is another way to get your hands on the names of keys to tweak. For instance, the System V IPC modules don't have a related device file. This implies that you cannot tweak values with the help of ndd . Nevertheless, you can obtain all clear text strings from the module file in the kernel:

strings -a /kernel/sys/shmsys # possible

nm /kernel/sys/shmsys # recommended

You are seeing a number of strings. Most of the strings are either names of functions within the module or clear text string passages defined within the module. Strings starting with shminfo are the names of user-tunable parameters. Now, how do you separate tunable parameters from the other stuff? I really don't know. If you have some knowledge about Sun DDI, you may be able to help me find a recommendable way, e.g., using _info (9E) and mod_info .

Recommended Patches

It is utterly necessary to patch your Solaris system, if you haven't already done so. Have a look at the DFN CERT patch mirror at ftp://ftp.cert.dfn.de/pub/vendor/sun/patches or the original source from Sun at http://access1.sun.com/patch.recommended/rec.html . There may be a mirror closer to you; for example EUNet and FUNET have their own mirrors, if I am informed correctly.

Please remember to press the Shift button on your Netscape Navigator while selecting a link. If the patch is not loadable, a new release has probably appeared in the meantime. To verify this, have a look at the directories of DFN CERT or Sun. The README file on the DNF-CERT server is kept without a version number and thus always up to date:

ip and ifconfig patch

103630-09 for Solaris 2.5.1 (README)
103169-12 for Solaris 2.5 (README)

tcp patch (only with ip patches)

103582-15 for Solaris 2.5.1 (README)
103447-09 for Solaris 2.5 (README)

Every system administrator should know the contents of Sun's patch page. Besides previously mentioned patches for good TCP/IP performance, you should always consider the security-related patches. Also, Sun recommends a set of further patches to complete the support for large IP addresses. You should really include any DNS-related patch.

