This document is provided without warranty, always vet out what works best for you and your organization.

Web Application Security Architecture Standard

Scope

This standard applies to all corporate equipment and data, including corporate customer data, whether located at a corporate facility or a third party facility, and whether handled by corporate employees, or corporate contractors, vendors, third party service providers, or their staff or agents. This standard also applies to all wholly owned and partially owned subsidiaries.

The guidance in this standard shall be considered the minimum acceptable requirements for the use of Web Application Security Architecture. This standard sets forth expectations across the entire organization. Additional guidance and control measures may apply to certain areas of corporate. This standard shall not be construed to limit application of more stringent requirements where justified by business needs or assessed risks.

Web Application Security Architecture Standard

Corporate’s business functions rely upon the integrity, confidentiality, and availability of its computer systems and the information assets stored within them. Responsibilities and procedures for the management, operation and security of all information processing facilities must be established. This standard supports the stated objectives.

Roles & Responsibilities

The Development Security Lead is a member of the development team that will be the main point of contact within the development team for security related questions throughout the software development lifecycle.
The Security Advisor is not a member of the development team and guides the team in following the secure coding practice. The Security Advisor will perform the final security review approval.

The Project Manager communicates security information to all teams and ensures security pushes are scheduled and performed. They keep QA and development of changes in security practice.

Quality Assurance tracks software defects and security vulnerabilities separately and communicates them to development.

The Information Security Department will assist End Users and IT Custodians in assessing, defining, implementing, managing and monitoring appropriate controls and security measures.

The Information Security Department will audit and review the adequacy of controls and security measures in place to measure and enforce conformance to this standard.

Web Application Security Principles

The following software security architecture principles should be considered when designing applications at corporate.

Fail Safe - Your application must always fail safe. That is to say if it encounters a situation and it can no longer proceed, it must deny access to the resource. For example, if a firewall cannot validate the action that is being requested by the requester, it should reject the operation; this is known as fail close or fail safe.

Security through Obscurity does not Work – Obscurity should not be used as the only or primary security mechanism.

Simplicity - Complexity increases the potential risk of problems. Application architecture and implementations should be as simple as is practical. This also makes it easy to do the right thing.

End to end security – Where data requires protection during transportation, it should be enforced from the sender to the recipient (end to end).

Compartmentalize - Applications should compartmentalize user access. Compartmentalization provides user access to data and functions that they require and restricts them from accessing data or functions they do not need.

Defense in Depth - Applications should use multiple layers of security. This ensures that if one security mechanism is vulnerable to an attack, an additional layer will still enforce an adequate security policy. Password files for example, should be restricted by access control lists and encryption. Similarly even if data is validated, the use of stored procedures or prepared SQL statements is strongly recommended since it adds an additional layer of defense.

Least Privilege – Applications should run with the minimum amount of system privileges that they need to function. Where elevated privileges are required they should be granted for the minimum period of time they are required. A similar principle is the “need to know” principle. Ensure that only the minimum number of people have administrative level access to production web, database and application servers.

Trust but Verify – Applications need to trust other applications or objects on the same host or on the network however, they must always verify the source they are trusting. The same also applies to users and their actions. For instance, before performing any administrative action, it is important to check that the requesting user is indeed an administrator authorized to request such an action.

Think Strategically – There are no security silver bullets. Security requires constant monitoring and improvement and is not somebody else’s responsibility. Pay special attention to architecting the right solution so that it maybe reused frequently. The use of software design patterns and frameworks like JAVA Struts are therefore strongly encouraged.

Security Architecture

A typical architecture for web applications could be considered as having three major layers:

Presentation Layer – presents data to the client via a web server.

Business Logic Layer – performs business logic.

Enterprise Information Store (EIS) – storage of persistent data typically in a database server.

The presentation layer normally resides in a semi-trusted environment such as a firewall DMZ. Other layers reside in a trusted network. It is important to ensure that no sensitive operations such as key generation storage or management be performed in the DMZ. For all practical purposes the DMZ should be treated as un-trusted in these respects.

The diagram below explains the different locations where various security tasks must be performed. The various security tasks and action that need to be performed in each of those tasks are explained in detail in the following section.

Securing the Network Infrastructure

The following table provides security settings to ensure a secure network infrastructure:

Patches and Security Updates

· Ensure network devices are running the most current and secure version of the firmware. This information maybe obtained from the vendor.

· Setup a patch management policy that includes testing of the patch before deployment.

Access Controls

· Ensure that the ACLs and rulesets are correctly defined as required by the application and business.

Block all unnecessary ports and services and lock down administrative interfaces to be inaccessible via the Internet and only accessible from specific hosts.
· Administrative interfaces ALL require RADIUS or TACACs authentication.

· Network ACLs may be used if needed.

· Use the Default Deny security principle.

Auditing and Logging

Ensure that logging is enabled for all dropped/denied traffic and that the logs are stored centrally in a secured location, potentially on a separate VLAN.

Setup a workflow to ensure that logs are monitored regularly to detect attack patterns.

· Ensure that all logging devices operate on a synchronized clock.

· Intrusion Detection/ Prevention

· Setup IDS sensors both in the DMZ and in the trusted network to detect attacks.

· Setup remediation workflows that include automatic event notification.

Factory Defaults

Make sure that all factory default user names and passwords as well as other security settings like IDs are changed to new ones with sufficient complexity.

Securing the Web Server

In dealing with the web server it is imperative to apply many of the same principles described above for network devices. The following table lists the issues that must be considered:

· Patches and Security Updates

· Ensure that the operating system has the latest updates, patches and service packs.

· Similarly the web server and any programming frameworks must be kept up to date.

Access Controls

Block all unnecessary ports and services and allow only port 80 (HTTP) and if required 443 (SSL) to be open.

Lock down administrative interfaces to be inaccessible via the Internet and only accessible from specific hosts.

Ensure there are no world writable files and that all files are permissioned according to the business logic.

Configuration

Do not run multiple services such as FTP or NNTP of the same machine.

Disable WebDav if running and unused.

Ensure that the accounts being used by the daemon or service adhere to the principle of least privilege.

Delete any unused accounts such as guest.

Rename the default super user account and use a strong password.

Disable unsecured remote logons such as Telnet and enable SSH or other secure remote logon protocols only if needed.

All sample websites, applications, backups or development tools must be removed from the production web servers.

The web root should be on a different file system from the operating system files and directory traversal or listing must be disabled.

Unused script extensions must be disabled and mapped to the default HTTP 404 page.

Only the necessary HTTP commands should be enabled. This is typically HEAD, GET and POST. TRACE, OPTIONS and other unused commands must be disabled.

Auditing and Logging

All login failures must be logged along with the source of the failed login.

Resource access failures must be logged.

Logs should be collected or written to a remote hardened logging server.

Log files must be regularly backed up and archived.

Securing the Application Server

Patches and Security Updates

Ensure that the operating system has the latest updates, patches and service packs.

Similarly the application server and programming framework must be kept up to date.

Transport Security

Use SSL or IPSec to protect communication to and from the application server.

Use encrypted RPC, XML digital signatures and WS-Security for web services.

Use a segmented network which can isolate eavesdropping to compromised segments.

Access Control

Ensure there are no world writable files and that all files are permissioned according to the business logic.

Ensure that the accounts being used by the daemon or service adhere to the principle of least privilege.

Delete any unused accounts such as guest.

Disable unsecured remote logons such as Telnet and enable SSH or other secure remote logon protocols only if needed.

Ensure only the necessary ports are accessible outside the firewall protecting the application server.

If possible use IPSec policies to restrict host connectivity.

Configuration

Do not run multiple services such as FTP or NNTP of the same machine.

All sample websites, applications, backups or development tools must be removed from the production servers.

· Configure session management options via the appropriate configuration tools / XML files e.g. weblogic.xml on BEA WebLogic so that session IDs and cookies are generated with sufficient randomness and relatively short lifetimes.

· Similarly configure session timeouts as per the guidelines provided later in this document.

· Auditing and Logging

· Enable detailed logging options that are supported by the application server.

· All login failures must be logged along with the source of the failed login.

· Resource access failures must be logged.

· Logs could be written to a remote hardened logging server.

· Log files must be regularly backed up and archived.

· Securing the Database Server

The following table lists the requirements for a secure database server:

Patches and Security Updates

Ensure that the operating system has the latest updates, patches and service packs.

· Similarly the database server and any database connectivity components like ODBC and JDBC drivers are patched and up to date.

Access Controls

· Block all unnecessary ports and services and allow only the specific ports needed by the database server being used.

· Do not run multiple services such as FTP or NNTP of the same machine.

· Ensure there are no world writable files and that all files are permissioned according to the business logic.

· Disable extended stored procedures that allow command execution if not needed by the application.

· Configuration

· Ensure that the accounts being used by the database daemon or service adhere to the principle of least privilege.

· Delete any unused accounts such as guest.

· Rename the default super user account and use a strong password.

· Disable unsecured remote logons such as Telnet and enable SSH or other secure remote logon protocols only if needed.

· All sample databases and tables must be removed from the production web servers.

· Database files maybe stored on an encrypted file system if supported by the operating system and database server.

· Auditing and Logging

· All login failures must be logged along with the source of the failed login.

· Enable database server logging.

· Resource access failures must be logged.

· Logs could be written to a remote hardened logging server.

· Log files must be regularly backed up and archived.

Factory Defaults

· Change the default database administrator password.

· Change the default port used by the database server for additional security.

· Ensure that the database server roles do not contain any unnecessary users such as the guest or anonymous account and disable unused roles.

Authentication

Authentication for a web application in practice takes the following three forms:

· User Authentication

· Password Based

· HTTP Basic / Clear Text

· HTTP Digest

· Shared Secret (Kerberos / NTLM v2)

· One Time Password (tokens / RSA token or S/Key)

· Personal Digital Certificates

· Biometrics

· Session Tokens

· Cookies

· ASP/JAVA Session IDs

· Entity / Component Authentication

· Code Signing Certificates

· Strong Names

· Authenticode

· JAR Signing

· Server Authentication

· IPSEC

· PKI

· X.509 Certificates

All credentials in any form must be transmitted over an encrypted tunnel (SSL/TLS using a minimum 128 Bit encryption). This implies that the HTTP / Clear Text Authentication scheme is not permitted for use. HTTP Digest Authentication is also not permitted since it does not allow for effective user management.

Especially for web applications, it is important to clearly separate public and restricted areas of the website. For all public data, the authentication mechanisms and SSL is optional. All private data must require authentication over an encrypted tunnel at a minimum using some form of shared secret such as a password.
For all confidential data and sensitive data a minimum of two factor authentication is required, for example using client certificates and tokens.
If password authentication is used, then besides the SSL, a one way hash function like SHA-2 must be applied to the password using a salt before transmission and storage in the database. Thus, no one but the user can know what his/her password is. Even if someone has access to the database, the best they can hope to view is the salted password hash. As a best practice when using passwords the use of a challenge response type protocol is highly recommended to prevent transmitting the password or it’s hash over the wire.
· JAVA developers as a best practice should leverage the JAVA Authentication and Authorization Service present in the JAVA SDK. This service provides an API for performing user based authentication and authorization.

· All content that is available prior to authentication should be extensively examined for vulnerabilities. Attackers will be able to scour this for facts to use later.

· Verify authentication mechanisms check for boundary conditions such as null and “” empty strings within user input fields.

Check for common user account names and passwords

Ensure that error pages for incorrect user names, incorrect passwords, and multiple logon failures result in identical error pages. This prevents revealing details about whether or not the userid or password was correct.

Analyze the lockout procedures to determine Denial of Service attacks. A compromise will need to be made between lockout policy and DoS possibilities.

Authorization

Three fundamental authorization or access control models are used in practice. Discretionary Access Control is operator driven i.e. the owner of the resource determines the permissions on the resource. This is most commonly seen in commercial operating systems through permissions on files, sockets and other such securable objects. Mandatory Access Control on the other hand uses a classification scheme common in government and defense installations to ensure the integrity and confidentiality of primarily data resources. A third hybrid model is Role Based Access Control. The major advantage of this model is that it allows the application to leverage the underlying operating system’s security subsystem while adapting it to be application specific. Programmatically, authorization usually occurs based on a security token issued to the user when he/she logs in to the application. For instance, cookies or session IDs are often used as such security tokens in web applications. Because of the flexibility it offers, the use of role based access control is strongly encouraged across all applications that build their own authorization schemes. If an extensive and specific authorization model is not required, then the underlying operating system’s access control infrastructure maybe leveraged.

Role Based Access Control

Role based access control (RBAC) should be the preferred authorization for developers building applications. Along with the advantages mentioned above, RBAC also has the advantage that it can very easily be centralized so as to provide one authorization entry point into the system. RBAC has language level support in JAVA/J2EE using the deploytool as well as in .NET and COM+ through the System.Security.Permissions namespace and the ObjectContext object respectively. Application designers and developers looking to implement authorization should use the following step-wise approach:

Identify the resources that need to be protected. Examples of such resources include customer data such as social security numbers and credit card information, application configuration data such as database connection strings, cryptographic keys and passwords as well as the application code, executables and processes themselves.

The next step is to identify the actions/operations that can and/or cannot be performed over the resources. Typical operations include reading, writing, creating a new instance and modifying or deleting an existing instance.

Identify the roles in the application. These typically can be obtained from the use-case scenarios for the application where they are often represented as the actors or subjects. It is important at this stage to identify hierarchies as well. Most applications requiring authentication would have at least three roles: an unauthenticated user, an authenticated user and a super user or administrator. Typically, the capabilities of each of these roles are contained within the higher level role. This implies that an authenticated user for instance can do everything a unauthenticated user can do plus more.

Roles are typically mapped to operating system groups. Most commercial operating systems support the concept of a group and by leveraging this, the application developer can ensure that the operating system reference monitor will enforce any access control that has been defined. Similarly, it follows that individual operating system user accounts can be created to represent the application specific users. These users can then be placed in groups based on their assigned roles. For web based applications dealing with large number of accounts, it is recommended to not use the underlying operating system accounts since this can cause a large overhead. In such cases, applications may create their own users and roles which must be stored in the database. While the steps described here remain identical, the application is now responsible for acting as the reference monitor and enforcing access control based on the requesting role.

The final step in this process is to identify the authorization constraints. This steps aims to bring the resources, the actions that maybe performed on those resources and the roles together to define which roles can perform what operations. For instance, one might have a constraint that an unauthenticated user may only view the home page and the contact information page.
An authenticated user could view all the pages so long as they only contain information specific to him/her. Finally, only an administrator is allowed access to the user management page for creating/deleting users and resetting passwords. Authorization decisions must be made as close to the resource being protected as possible. For example, if the data in a database table is being protected, then the database or data layer is best suited to make the authorization decision. This also enhances the ability of the application to define fine-grained privileges.

As a best practice, using Secure UML to document the above steps is highly recommended. By the usage of familiar UML notation diagrams, it is possible to identify flaws such as backdoors and multiple entry paths. Diagramming tools like Rational Rose have the advantage that they can be far more explicit than verbose text thus uncovering any underlying assumptions.

Access Control

Any authorization scheme is only as secure as it is implemented. It is therefore critical that developers do not expect the operating system, the system deployer or administrator to define access control. Defining file system ACLs is an excellent example of this and must be set by the application itself potentially during the installation process. Most large database vendors support at least table level access control. If needed third party database shims maybe used to extend this further to column level access. In keeping with the role-based approach discussed above, the resources should have ACLs defined using the operating system group and user accounts that the application roles map into.

Whenever, a request is made from outside the trust boundary of a component the component must authorize the request. For instance, if a database modification is requested by an application that resides outside the trust boundary for the database, then the database must request authorization irrespective of whether the application has performed authorization or not.

Impersonation

The principle of least privilege must be adhered to by all application developers and architects. A common way of implementing this principle is through the use of impersonation. On UNIX systems for instance this is commonly done using setuid and/or setgid. Thus, only if absolutely needed, should an application run as an elevated user. Even when the need for impersonation is unavoidable, developers should ensure that the privilege is used for an extremely short and finite duration and for a specific resource. If elevated privileges are needed in multiple parts of the application then privileges must be raised and dropped separately rather than raising them for an extended period of time. The impact of exceptions when privileges are raised must also be kept in mind. Typically this is best handled using the finally clause to lower privileges since it will be executed irrespective of whether an exception is raised or not.

Developers must avoid the temptation of using elevated privileges because it makes development easier. There are easy ways to avoid the need for elevated privileges, for instance the /tmp directory is most often world writable, hence if temporary files need to be created this is an excellent place to do so, rather than in the application directory itself which typically should be only root/owner writable. When privileges are elevated programmatically a few issues must be kept in mind. All function and system calls made from that point on till privileges are reduced will operate at the enhanced privilege; hence the function callees must be aware of this and take it into account. Another common issue to watch out for is what is described as the Time of Check – Time of Use (TOCTOU) problem. Developers must ensure that before an authorization decision is made the application must be able to satisfy itself that the security token it is referencing is the one that is most current, valid and indeed belongs to the user making the request. If there is a significant time lag between check for access and performing an operation then a malicious attacker may have the opportunity to change the operation to be performed. A common manifestation of this is when application uses symbolic links. An attacker can attempt to change the location to which the link points to after the access check has been performed. Similarly, if the access check is performed when running in elevated privileges and is not re-done when privileges are lowered, access maybe falsely granted to a resource.

Session Management

Application developers especially those creating web applications must pay special attention to session management. This includes aspects such as the security of the security tokens and session inactivity timeouts.
Designers and developers should leverage the underlying frameworks (whether J2EE or ASP/ASP.NET) session management capabilities as far as possible. These capabilities typically manifest themselves via a session ID. Infrastructure supplied session IDs have the advantage of being sufficiently random so that an attacker cannot attempt a guessing or brute force attack. The application must never rely on just the username submitted with a request when determining the session to which the request belongs to. Session IDs issued by the application frameworks also typically have a relatively short lifetime and thus can prevent the “permanently logged in” effect.

An application that seeks to create its own session management capabilities must have explicit written prior approval from the Information Security Director. Further, the following directives must be followed:

Cookies are the preferred mechanism. These are also commonly used in association with session IDs. When using cookies, developers must clearly define the cookie expiration date and time as well as ensure that the cookie is not persistent. After thirty minutes of inactivity, the user must be forced to re-login.

Cookies must be marked secure for SSL connections to ensure they do not initiate connections over clear text connection.

Usage of secure cookies is required whenever the application uses the cookies for security purposes. Special care must be taken when the application switches between secure (SSL protected) and insecure modes, so as to ensure that the cookies are not exposed when traversing the wire in insecure mode. Another common mistake that developers often make is to not issue a fresh session ID when the application switches from an insecure mode (used typically before a user logs in to the application) to a secure mode (after log in). Thus an attacker who has obtained a cookie by sniffing traffic can wait for the legitimate user to log in and then use that cookie to impersonate him/her.

Cookies must never contain sensitive information such as passwords.

All application defined session identifiers or cookies must have at least 128 bits of entropy. This typically equates to 16 or more ASCII characters. Alphanumeric characters must be used if cookies are used for session management or other security purposes.

When the user is logged out, the session must be invalidated both on the server side and the client side. This is typically done by deleting the session entry from the server data store as well as by clearing the cookie in the client application or browser.

The user should NOT be sending session data back to the server. Security sensitive session data should be stored only on the server.

Avoid using the GET method to transport session ID. The session ID will be logged in the referrer log or easily manipulated when passed in the URL.

Analyze every session variable for misuse. Focus on invoking pages and out of sequence as in the following example:

#display.php

if ($_POST[“action”]==”display”)

{

display_account($_SESSION[“account”]);

}

else if ($_POST[“action”]==”select”)

{

if (is_my_account($_POST[“account’]))

{

&_SESSION[“account”]=$_POST[“account”];

display_menu();

}

else

display_error();

}

#transfer.php

if ($_POST[“action”]==”start_transfer”)

{

$_SESSION[“account”]=$_POST[“destination_account”];

$_SESSION[“account2”]=$_POST[“source_account”];

$_SESSION[“amount”]=$_POST[“amount”];

display_confirm_page();

}

else if ($_POST[“action”]==”confirm_transfer”)

{

$src = $_SESSION[“account”];

$dst = $_SESSION[“account2”];

$amount = $_SESSION[“amount”];

if (valid_transfer($src, $dst, $amount))

Do_transfer($src, $Dst, $amount);

else

Display_error_page();

}

The session variable $_SESSION[“account”] is used in both display.php and transfer.php, but for different purposes and security controls. An attacker can use transfer.php to set the value of SESSION[“account”] and then go to display.php and display the contents of the account.

Even though session variables are only set on the server, careful analyses of session variable usage should be performed in all cases.

Data should not be left in session variables after an error condition. Error logic should be performed first. Exit conditions should not set session or persistent data stores unless the error conditions are passed.

Do not accept session keys that are not generated by the application server.

Protect the session validation mechanism from brute force attacks

Analyze the load balance structure for security vulnerabilities

Session token transmission must be protected. The session token can be stored in either cookies, hidden form fields, or URL parameters. Will this data be stored on web proxies, browser histories, sniffers or web behavior monitors?

User Management

The following user management standards must be implemented across all applications.

User Names

User names must be unique and must never contain personally identifiable information such as the social security number of a user. User names must be a minimum of 6 characters long.

Passwords

Complexity - All user passwords must be a minimum of 8 characters long. Administrator passwords must be a minimum of 12 characters long. Passwords must be alpha numeric and must be case sensitive.
Storage - All passwords must be stored in an encrypted form. Corporate approves the use of the SHA-2 algorithms to provide one way hashing. All passwords must be hashed with a salt value of no less than 8 ASCII characters for a user.

Expiry - A user account accessing confidential or secret information must require passwords to be changed after 90 days. An administrative account password must be expired after 30 days.

Password Reset Mechanisms

For password resets, the approved method is the answer to a secret question. Online password reset systems can be implemented using this method. A secret question and secret answer should be captured at registration or during a subsequent authenticated session. These questions should be free form, i.e., the application should allow the user to create his/her own question and the corresponding answer rather than selecting from a set of predetermined questions.

Secret answers must be stored in an encrypted form. The cryptography section below lists the algorithms that maybe used for this purpose.

As passwords cannot be recovered even by the system, when the user provides the correct answer to the question, the system must generate a new random password and send it to the user “out of band” i.e. not be rendered to the screen. A source of randomness such as /dev/random on UNIX systems may be used for this purpose.

Corporate approves the use of sending the new password to the user at a pre-registered email address. The password must be set to change the first time the new user logs on with the changed password. Password resets must be logged.

Account Lockout

If an attacker is able to guess passwords without the account becoming disabled, eventually he/she will be able to guess at least one password using brute force techniques.

A user must be locked out of the system after 5 bad attempts and the account can be re-enabled after administrative intervention or at least 30 minute delay. All bad password attempts must be logged and the user must be sent an email at pre-registered email address informing him / her of the lockout.
This guidance maybe be modified depending on the application’s purpose and data. Highly sensitive banking information may require a phone call to re-enacle, while general authentication access to a marketing site may only require delays after invalid attempt sequences.

Cryptography

Strong cryptography must be used both for transport security as well as for securing storage. Cryptogaphy must be used to achieve confidentiality, integrity, authentication and / or non-repudiation. For instance, passwords stored in databases must be hashed with a salt using a one-way function like SHA-2. For transport security, SSL must be used. The servers must support at least medium encryption cipher suites as described in the OpenSSL documentation. Anonymous Diffie-Hellman may never be used as the key exchange method. This algorithm involves no authentication and hence is susceptible to a man-in-the-middle attack. Server certificates must be relatively short lived bearing in mind that the capabilities to brute force keys increase dramatically each year. Expired certificates or revoked certificates must be quickly replaced so as to avoid any misuse. Private keys used during certificate creation must be stored securely using mechanisms described below in the Key Storage section. As a best practice, whenever possible SSL based applications should insist on mutual authentication of the client and server using X.509 certificates.

Approved Algorithms

Developers may not and should not attempt to devise their own cryptographic primitives. Use of any form of reversible or non-deterministic encryption such as simple rotation or substitution ciphers is prohibited. The following table lists the algorithms and minimum key lengths that are permitted for use within applications:

	Algorithm
	Key Exchange Method
	Minimum Key Length
	Key Lifetime
	Recommended Usage Scenarios

	AES
	RSA
	256
	6 months – 1 year
	Bulk encryption (files, databases)

	RSA
	Public Key Infrastructure
	2048
	1-2 years
	Key exchange, secure messaging.

	SHA-2
	N/A
	N/A
	N/A
	Integrity, salted password hashing

Developers must note that encryption on its own does not guarantee integrity. Use of SHA-2 hashes is necessary to meet integrity requirements.

Key Generation and Management

As far as possible keys must be generated and stored offline in secure storage. Keys maybe generated using the keytool utility in the JAVA SDK. OpenSSL provides similar functionality. The JAVA framework supports keystores that are pass-phrase protected. If session keys have to be created dynamically the JAVA keystore object represents an in-memory collection of keys and certificates. On Microsoft platforms the Microsoft Cryptography API (CryptoAPI) or the Data Protection API (DPAPI) must be used to store and create keys.

Data Validation

The lack of data validation is primarily responsible for a large number of attacks against software. These include buffer overflows, SQL injection and cross site scripting. In order to prevent such attacks developers must validate all data as it flows across the trust boundaries of the application. While this can have a minor performance hit it is important to note that a marginally slower application is far more useful than a hacked application.

Trust Boundaries

As application developers the first step is to define the trust boundaries for the application. Trust must be essentially defined by what you as an individual developer or group have control over. Common examples of this could include the web browser and the HTML content versus the web server or your application versus a third party component or automated data feed. A methodical approach of identifying all inputs and outputs without making assumptions about what other components will be doing must be followed in determining the trust boundaries. One must also be very careful about partial trust. In most cases it is best to not trust at all in such cases rather trusting sometimes. Trust is also impacted by attributes such as file system ACLs. For instance, if configuration information is read from a while that is world writable then its contents can never be trusted.

Client Side Validation

As developers of client server software it is important to never trust the client, even if you wrote it and it is a thin client. It is trivial to use applications such as web proxies and code dis-assemblers to reverse engineer clients or negate the effects of any client side validation. Hence, developers must perform validation on the server side. As a best practice and for performance reasons, client side validation maybe performed to prevent unnecessary server round-trips if legitimate users make innocent mistakes while entering input. Sensitive information must never be placed on the client side. For instance, developers must not place product attributes such as the price in a hidden HTML form field and then trust that price to be correct.

Data Sanitization

If developing in a scripting language, even though the language permits late binding and weakly typed code, this must be avoided. Additionally, wherever polymorphism is in use, it is important to check the type of arguments passed in before operating on them. This can be done using reflection in both JAVA and .NET or by using the C++ casting operators.
Especially when developing in languages such as C and C++, developers are responsible for bounds checking so that no buffer is filled with more data than it can safely occupy. Use of the standard template library (STL) is recommended as a best practice for dealing with such problems. Data sanitization must also be performed before validation is performed since attackers might attempt to bypass the validation using HTTP or UNICODE encoding.

String Validation and Preventing SQL Injection

String validation must be performed using regular expressions. Both the .NET and JAVA programming frameworks provide support for regular expressions. The java.util.regex.* package in the JAVA SDK is an excellent example of this.
Especially with web applications, developers must be filter common cross site scripting,

SQL injection and XPATH injection meta-characters such as those shown in the following table:

[1] | (pipe sign)

[2] & (ampersand sign)

[3] ; (semicolon sign)

[4] $ (dollar sign)

[5] % (percent sign)

[6] @ (at sign)

[7] ' (single apostrophe)

[8] " (quotation mark)

[9] \' (backslash-escaped apostrophe)

[10] \" (backslash-escaped quotation mark)

[11] < (left triangular parenthesis)

[12] > (right triangular parenthesis)

[13] ((left parenthesis)

[14]) (right parenthesis)

[15] + (plus sign)

[16] CR (Carriage return, ASCII 0x0d)

[17] LF (Line feed, ASCII 0x0a)

[18] , (comma sign)

[19] \ (backslash)

[20] – (dash or minus sign)

[21] [(left bracket)

[22]] (right bracket)

LDAP Injection

LDAP injection like SQL injection can also occur where queries are reading or modifying directory services. Using positive validation by allowing alphanumeric characters (A..Z,a..z,0..9) will prevent most LDAP injections. LDAP characters which should be filtered out or escaped:

[1] A space or "#" character at the beginning of the string

[2] A space character at the end of the string

[3] , (comma sign)

[4] + (plus sign)

[5] " (quotation mark)

[6] \ (backslash)

[7] <> (triangular parenthesis)

[8] ; (semicolon sign)

[9] () (parenthesis)

[10] | (pipe symbol)

[11] & (ampersand)

[12] = (equal)

[13] * (

SQL Injection can be made extremely difficult to accomplish by the use of stored procedures or prepared SQL statements or by using bind variables. With this in mind developers may not use dynamic SQL queries and must perform all operations using such stored procedures. These not only have a security advantage but also provide a significant performance improvement. However, it must be noted that the use of SQL commands such as EXEC in stored procedures with un-validated input parameters does make the application vulnerable once again to SQL injection.

Cross Site Scripting

Cross site scripting is best dealt with using output validation. The intention is to convert harmful characters to an encoding the would be rendered harmlessly in the client’s browser. For example, data that is being outputted as plain HTML should perform the following character substitutions:

[1] <> (triangular parenthesis)

[2] " (quotation mark)

[3] ' (single apostrophe)

[4] % (percent sign)

[5] ; (semicolon)

[6] () (parenthesis)

[7] & (ampersand sign)

[8] + (plus sign)

Replace:
With:

'<'

"<"

'>'

">"

'"'

"""

'\''

"'"

'%'

"%"

';'

";"

'('

"("

')'

")"

'&'

"&"

'+'

"+"

It is important to consider how data is intended to be rendered in the clients browser in order to determine what character encoding should be performed. There are seven categories of HTML output that require different encoding strategies, as each is interpreted differently. To ensure that the correct encoding is being employed use libraries from trusted sources to apply the encoding.
These libraries as a whole provide encoding for several common HTML output types – plain HTML, HTML attribute, URL, JavaScript, VBScript, XML, and XML attribute. Examples using these encoding libraries:

Plain HTML:

<html>

 <body>

 Thank for typing:<%=Reform.HtmlEncode(Request.QueryString["user_input"])%>

 </body>

</html>

Reform.HtmlEncode(“<script> alert(‘test’) </script”);

HTML attribute:

<html>

 <body>k

 <img src='image.jpg'

 alt='<%=Reform.HtmlAttributeEncode(Request.QueryString["alt"])%>' />

 </body>

</html>

Canonicalization

Canonicalization involves converting a directory or file path into its simplest and absolute form. For example:

C:\DocumentsandSettings\John_Smith\Desktop\DoesNotExist\DNE\..\..\special.doc

When canonicalized refers to:

C:\DocumentsandSettings\John_Smith\Desktop\special.doc

It’s important to first decode or expand all user input before canonicalizing pathnames. Users can use many different encodings of ../../ to trick applications into providing access unintended files. This is exploited by attackers since the same symbol can have multiple representations. For instance, < c;, < all refer to the < symbol. Similarly URL and UNICODE encoding result in multiple representations.

Internationalization

Developers are required to use the UNICODE UTF-8 encoding scheme as the character set for their applications. This is intended to prevent problems arising due to internationalization. While both .NET and JAVA automatically use UNICODE, C / C++ developers have to utilize the appropriate compiler switches to ensure that this character set is used.

Error and Exception Handing

Error messaging and exception handling must be part and parcel of all applications.

An exception differs from an error since the former is typically the result of an un-contemplated situation. With this in mind exceptions should never be used to represent errors. Most often errors represent recoverable problems while exceptions could often be unrecoverable depending on its nature. If this is the case then it is necessary that the application fails securely. For instance, this could mean denying service even to legitimate users. An excellent example of this is a firewall. If a firewall encounters an exception from which it cannot recover, it is best for it to fail and block all traffic – thus failing securely – rather than failing open which would mean allowing all traffic to pass unregulated.

Improper error and exception handling could help an attacker gain access to information that typically is not publicly available.

Good error messages give notification that a problem occurred, an explanation of why the problem occurred, and a solution so that the user can fix the problem. Good error message text is specific, user-centered, clear, consistent, and courteous.

Error handling must be performed at every layer of the application. All errors must be sanitized and no sensitive information must be displayed in the client. Database or application layer error message should also be intercepted and must not be displayed back to the client. Error messages should be simple and concise. They should never contain code snippets, SQL statements, detailed failure explanations. Any information needed for debugging must be logged on the server side as described later in this document. For example an error message should never show a stack trace to a client. If a valid user name but an invalid password is entered the error message should never indicate that one of them was correct. Rather provide no information that could potentially aid an attacker in a brute force or other attack.

An error and exception handling framework must be implemented in every application. Special care must be taken if an exception can occur when the application is running in elevated privilege mode. This is especially true when using exception handlers. Developers must ensure that privilege downgrading when necessary must be performed in the exception handler and not just in the try block since if an exception does occur the downgrade will not take place otherwise. An efficient way to deal with this is to utilize the finally block supported by most modern programming languages.

Event Logging

Event logs must be created since they not only aid in debugging but can also help in incident response and in identifying and recovering from an attack. Logs must be able to inform the reader who did what and how they did it. Application developers must not rely on the web server or database server logging but must create application specific logs. Ensure that no personal or confidential data is logged, for instance the social security or credit card number of a customer.

Logging Sources

Perimeter devices – network events

Operating System – System access and authentication details

Web Server – OS and implementation specific locations

Application – Placed in variety of locations including OS, Web, and implementation specific

Database – Database transactions and access

Information that must be Logged

The following table lists the attributes that must be contained in the logs in addition to any application specific information:

Logging Parameters

Date and Time

User Account Information

Caller Information and Parameter Values

Network Address

Source Code Reference (where in the code the log was being generated)

Application Name

Application Parameters such as the current process and thread IDs.

Some of the above parameters may only be relevant in multi-processing or multi-threaded applications.

Logging Levels

The following lists the recommended log levels that an application may use:

Debug - For developer use only. Should be removed from production systems.

Info - Informational messages like usage statistics.

Warning - Potential problems such as disk quota warnings.

Error - Errors in the code.

Fatal - Exceptions in the code.

Events that must be Logged

The following lists the set of events classified based on function that must be logged:

Authentication - Log success and failures along with user ID. Passwords must never be logged.

User Logons

User Logoffs

Service Logons

Network Logons

Authorization - Log success and failures along with effective user ID and user ID.

Resource Access

Impersonation Attempt

Privilege Use

Delegation

Session Management

Session Creation - Log time stamp when session was created as well as user ID and session ID information.

Session Termination - Log time stamp when session was terminated.

Session Timeout / Expiry - Log the reason and time stamp information.

User Management

Account Creation - Log success and failure as well as the user ID of the administrator performing the user management and time.

Account Deletion

Account Modification

Password Reset - Log the network address that is requesting the password reset.

Account Lockout - Log the reason e.g. multiple failed login attempts and the network host responsible for the same.

Password Change - Log the time and network address of the host.

Roles Assignment - Log success and failure as well as the user ID of the administrator performing the user management and time.

Data Validation

Invalid Input Dropped - Log the network address of the client issuing the invalid input as well as the input itself.

Application Errors and Exceptions

Stack Trace and Call Graph - Log the data responsible for causing the error or exception and the state of the application when the error occurred. Do not log sensitive information or large chunks of source code or static information.

Logging

Attempts to change log levels - Log this information in a different location then the default log.

Attempts to delete log - This information can typically be obtained using the operating system’s file system logs.

Log Locations

Developers must adhere to the following guidelines with regards to the location to write the logs:

Always log to persistent storage. The logging medium must if possible be a separate hardened server which cannot be directly accessed even if the application were compromised. All communication to and from this log server must be encrypted.

If the volume of information being logged is not significant then developers are required to use the logging capabilities of the underlying operating system. This is the Event Logs under Windows and the SYSLOG daemon under UNIX.

If a custom log file is used then the path of this file must be configurable by the user and the ACLs over this file must be defined so that only application authorized users can read / write to the file. Logs created must be archived and backed up once a day and a new log file must be created. It is also recommended to create multiple log files: one for normal events and another for extraordinary occurrences

Log Libraries

JAVA developers are encouraged to use the java.util.logging package and not to define their own custom logging APIs. Development groups are encouraged to develop reusable centralized logging components that are standardized across the group.

