Enterprise Web Service Recommendations
REST Web services need to scale to meet increasingly high performance demands between Client and Server. Clusters of servers with load-balancing and failover capabilities, proxies, and gateways are typically arranged in a way that forms a service topology, which allows requests to be forwarded from one server to the other as needed to decrease the overall response time of a Web service call. Using intermediary servers to improve scale requires REST Web service clients to send complete, independent requests; that is, to send requests that include all data needed to be fulfilled so that the components in the intermediary servers may forward, route, and load-balance without any state being held locally in between requests. 

This collaboration between client application and service is essential to being stateless in a REST-full Web service. It improves performance by saving bandwidth and minimizing server-side application state.

A complete, independent request doesn't require the server, while processing the request, to retrieve any kind of application context or state. A REST Web service application (or client) includes within the HTTP headers and body of a request all of the parameters, context, and data needed by the server-side component to generate a response. Statelessness in this sense improves Web service performance and simplifies the design and implementation of server-side components because the absence of state on the server removes the need to synchronize session data with an external application. 

The figure below illustrates a stateful service from which an application may request the next page in a multipage result set, assuming that the service keeps track of where the application leaves off while navigating the set. In this stateful design, the service increments and stores a previousPage variable somewhere to be able to respond to requests for next.

Stateful design


[image: image1.png]Ciient

GET Iresources/getNexiPage? HTTP/1.1

<rsp stat="ok'>
<resource id="1/>

<resource id="2>

<Irsp>

previousP:
retum nextPage;





Stateful services like this get complicated. In a Java Platform, Enterprise Edition (Java EE) environment stateful services require a lot of up-front consideration to efficiently store and enable the synchronization of session data across a cluster of Java EE containers.
In this type of environment, there's a problem familiar to servlet/JavaServer Pages (JSP) and Enterprise JavaBeans (EJB) developers who often struggle to find the root causes of java.io.NotSerializableException during session replication. Whether it's thrown by the servlet container during HttpSession replication or thrown by the EJB container during stateful EJB replication, it's a problem that can cost developers days in trying to pinpoint the one object that doesn't implement Serializable in a sometimes complex graph of objects that constitute the server's state. In addition, session synchronization adds overhead, which impacts server performance. 

Stateless server-side components, on the other hand, are less complicated to design, write, and distribute across load-balanced servers. A stateless service not only performs better, it shifts most of the responsibility of maintaining state to the client application. In a REST-full Web service, the server is responsible for generating responses and for providing an interface that enables the client to maintain application state on its own. For example, in the request for a multipage result set, the client should include the actual page number to retrieve instead of simply asking for next. 

Stateless design


[image: image2.png]Ciient

GET resources/?page=2 HTTP/1.1

<7l version="1.0'7>
<r3ppage="7 nextPages-y
<resource id="11"/>

<Irsp>





A stateless Web service generates a response that links to the next page number in the set and lets the client do what it needs to in order to keep this value around. This aspect of REST-full Web service design can be broken down into two sets of responsibilities as a high-level separation that clarifies just how a stateless service can be maintained:

Server

· Generates responses that include links to other resources to allow applications to navigate between related resources. This type of response embeds links. Similarly, if the request is for a parent or container resource, then a typical REST-full response might also include links to the parent's children or subordinate resources so that these remain connected. 

· Generates responses that indicate whether they are cacheable or not to improve performance by reducing the number of requests for duplicate resources and by eliminating some requests entirely. The server does this by including a Cache-Control and Last-Modified (a date value) HTTP response header.

Client Application

· Uses the Cache-Control response header to determine whether to cache the resource (make a local copy of it) or not. The client also reads the Last-Modified response header and sends back the date value in an If-Modified-Since header to ask the server if the resource has changed. This is called Conditional GET, and the two headers go hand in hand in that the server's response is a standard 304 code (Not Modified) and omits the actual resource requested if it has not changed since that time. A 304 HTTP response code means the client can safely use a cached, local copy of the resource representation as the most up-to-date, in effect bypassing subsequent GET requests until the resource changes. 

· Sends complete requests that can be serviced independently of other requests. This requires the client to make full use of HTTP headers as specified by the Web service interface and to send complete representations of resources in the request body. The client sends requests that make very few assumptions about prior requests, the existence of a session on the server, the server's ability to add context to a request, or about application state that is kept in between requests. 


Page 8


