JCL Conventions
· JCL should be coded in this format:
	Column 1
	Column 3
	Column 12
	Column 15

	//
	ddname or step name
	DD or EXEC
	DD parameters

Example:

----ï----10---ï----20---ï----30---ï----40---ï----50---ï----60---ï

//STEP0010 EXEC PGM=SECURITY

//STEPLIB DD DSN=D.SYSPROGS,DISP=SHR

//SYSPRINT DD SYSOUT=(,),OUTPUT=*.RMDSJCL

//INPUT01 DD DSN=B79.Dddd.pa%ENV..INFILE,DISP=SHR

//OUTPUT01 DD DSN=B79.Dddd.pa%ENV..OUTFILE,

// DISP=(NEW,CATLG),

// SPACE=(80,10),AVGREC=K,

// LRECL=80,RECFM=FB,DSORG=PS,

// UNIT=DISK,MGMTCLAS=AMLYBW

//SYSIN DD DSN=B79.D953.HP%GIO0101..CONTROL.CARDS(GIO0101),DISP=SHR

· ESP symbolic variables can only be included in JCL members, not procedures.

· In-stream data in JCL members is discouraged.

· In-stream data is required if ESP symbolic variables are used in the data.

· All output should go to RMDS.

· STEP names should follow the step name naming standards.

· Symbolic parameters from procedures should only be listed in a JCL member if the JCL member is overriding the parameter to change the value.

· Use generic control cards whenever possible.

· Control cards should be unique for each job with the only exception being generic control cards.

· Never use the region parameter.

· Submitting jobs through the internal reader is discouraged.

JCL Customization

Customization of JCL at Submission
ESP file tailoring can be used to customized JCL in the following ways:

1. Utilizing ESP Symbolic Variables.

2. Including and Excluding portions of JCL by using the %INCLUDE and %EXCLUDE statements.

· The statements must begin in column 1:

o %INCLUDE to begin inclusion

o %ENDINCL to end the inclusion

o %EXCLUDE to begin exclusion

o %ENDEXCL to end the exclusion

 These statements can not be nested.

 Each occurrence of a statement is an implied end to the previous statement.

 A %ENDxxxx is required only for the last occurrence of a %INCLUDE or %EXCLUDE.

 To continue a statement onto a second line:

o insert a plus sign (+) at the end of the first line to not include leading blank spaces in the second line.

o insert a hyphen (-) at the end of the first line to include leading blank spaces in the second line.

 A statement can only be continued once.

 These statements can utilize the following criteria:

o Day of the week

o Example:

 %INCLUDE DAY(MON)

o Range of days

o Examples:

 %INCLUDE FROM(1ST) TO(10th)

 %INCLUDE FROM(20OCT) TO(01NOV)

o Logical Expressions:

o IF keyword based on any logical expression, including ESP Symbolic Variables and ESP Calendars Center 2.

o Logical Operators: AND, OR

o Comparison Operators: EQ, NE, GT, LT, GE, LE

o Examples:

 %INCLUDE IF (%ESPSMMM='FEB' OR %ESPSMMM='MAY')

 %INCLUDE IF (TODAY('SATURDAY'))

 %INCLUDE IF (TODAY('LAST WORKDAY OF MONTH'))

 %INCLUDE IF (TODAY('ACCT_CUTOFF_DAY'))

 %INCLUDE IF (ESPEVENT = 'event name')

Customization of JCL at Execution
JCL can be customized at execution time in the following ways:

1. IF/THEN/ELSE/ENDIF Statement Construct

 IBM recommends using IF/THEN/ELSE/ENDIF statement construct rather than the COND parameter.

 The IF/THEN/ELSE/ENDIF statement construct has more functionality and is easier to use.

 Conditionally executes job steps based on return codes, abend conditions, and system or user abend completion codes.

 Steps are executed if the condition is true, and bypassed if the condition is false.

 IF/THEN/ELSE/ENDIF statement construction is coded as follows:

// IF (relational expression) then
//STEPxxxx EXEC xxxxx
.
.
.
// ENDIF

 The relational expression consists of:

o Comparison operations (EQ, NE, GT, LT, GE, LE)

o Logical operators: & (and) and | (or)

o Not (^) operators

o Relational expression keywords (RC, ABEND, ABENDCC, etc.)

 IF/THEN/ELSE/ENDIF statement constructs can be nested up to 15 levels.

 Either the THEN clause or ELSE clause must contain at lease one EXEC statement.

 A THEN or ELSE clause that does not contain an EXEC statement is a null clause.

 To test a single step, code the stepname or stepname.procstepname of the step you want to test.

o Example:

 // IF (STEP0126.RC NE 0) THEN

 To test all previously executed steps, do not include a stepname or stepname.procstepname.

o Example:

 // IF (RC NE 0) THEN

 If the step or procedure step that is being evaluated is not found in the job, the job will JCL error out.

 If the step or procedure step that is being evaluated did not execute, i.e. do to restarting, the result of the evaluation is false and the step will not execute.

 A step within an IF/ENDIF statement is not re-startable since the condition of the IF statement will be considered false, which will cause the step to be bypassed.

2. COND parameters.

 Conditionally executes job steps based on return codes.

 IBM recommends using the IF/THEN/ELSE/ENDIF statement construct rather than the COND parameter to test return codes.

 An EXEC statement COND parameter performs return code tests for only its step in a job.

 The system ignores a COND parameter on the first EXEC statement in a job.

 If a condition is true, the step is bypassed. If the condition if false, the step is executed.

 The COND parameter is coded as follows:

//STEPxxxx EXEC xxxxx,COND=(code,operator)
//STEPxxxx EXEC xxxxx,COND=(code,operator,stepname)
//STEPxxxx EXEC xxxxx,COND=(code,operator,stepname.procstepname)

 Where operator is EQ, NE, GT, LT, GE, LE

 If the step or procedure step that is being evaluated did not execute, i.e. do to restarting, the job will JCL error out because the job can not find the return code from the step being evaluated.

 The following table will assist in how to interpret COND parameters:

	
	Return code (RC) from a previous step

	Test in COND parameter
	Execute current step
	Bypass current step

	COND=(code,GT)
	RC >= code
	RC < code

	COND=(code,GE)
	RC > code
	RC <= code

	COND=(code,EQ)
	RC ^= code
	RC = code

	COND=(code,LT)
	RC <= code
	RC > code

	COND=(code,LE)
	RC < code
	RC >= code

	COND=(code,NE)
	RC = code
	RC ^= code

JCL Listing
When viewing the JCL that was used to execute a job, the system replaces the // in positions 1 and 2 of each JCL statement with a two or three digit code as follows:
	//
	This statement came from the jcl member.

	XX
	This statement came from a cataloged procedure.

	X/
	This statement came from a cataloged procedure and was overridden by a statement from the jobstream.

	This is a comment statement within a procedure.

	XX*
	This statement came from a cataloged procedure and, although it's not a comment statement, the systems considers it to contain only comments.

If a procedure is executed in-stream, the following codes are used:
	++
	An instream procedure statement that was not overridden.

	+/
	An insteam procedure statement that was overridden.

	++*
	An instream procedure statement, other than a comment statement, that the system considerd to contain only comments

	A comment statement within the procedure.

When coding MQ series control cards in JCL, the following rules apply:
1. Control cards are to be instream.

2. Use the appropriate ESP symbols to have ESP drive environment specific data.

Example:

//STEP0010.SYSIN DD *

%MQ20.

ISFROUTER..%MQMODE.REQUEST

M010..%MQMODE.REPLY

/*

Procedures
· The use of procedures (procs) is discouraged unless the procedure will be executed from more than one JCL member.

· Procedures can not contain in-stream control cards or data.

· Procedures can not contain ESP Symbolic Variables.

· All procedures should point to test files.

· Use symbolic parameters only if there is the possibility they will need to be overridden.

· Each GDG should have their own symbolic parameters for generation number to make restarts easier.

· The following symbolic parameters should be used for RMDS:

RMDSJCL='(,),OUTPUT=*.RMDSJCL'

RMDSABD='(,),OUTPUT=*.RMDSABND'

· All space parameters should be symbolic parameters.

· Overriding JCL statements in Procedures have the following rules:

· Procedure and step names referenced by other statement in the job should be unique within the job.

· Modifying (overriding) JCL statements must appear in the job stream following the EXEC statement for the procedure they are to modify and prior to the next EXEC statement.

· Modifying (overriding) JCL statements apply to one level of nesting only. You can use statements to modify statements in a procedure only for the level of nesting at which the EXEC statement for that procedure appears.

· Modifying (overriding) JCL statements cannot themselves be modified. Do not modify statements that are overrides or additions to a procedures.

· Modifying (overriding) JCL statements can only have procstepname.name or procstepname.ddname in their named field. Do not specify backward references to nested procedures, such as procstepname.procstepname.ddname dd parameters.

Return to Top
Sort Considerations
· A sort work area should not exceed 300 cylinders. If more space is needed, add additional SORTWKxx DD statements.

· Sort work areas should be coded as follows:

//SORTWK01 DD UNIT=DISK,SPACE=(CYL,300)

//SORTWK01 DD UNIT=DISK,SPACE=(CYL,300)

//SORTWK01 DD UNIT=DISK,SPACE=(CYL,300)

Tape File Considerations
Option S on TSO Storage Management Information and Utilities.(Calculation to determine whether to use disk or tape).

· Option S.3.1 on TSO can be used to view information about a tape.

· To minimize the number of tape drives allocated to a job, use UNIT=AFF=ddname when referencing multiple tapes within the same step.

· Refer to TSO PDS 'DXX.D948.TMSGUIDE' for details about working with TMS tapes. Some of the information is include here.

· DISP=OLD should not be used when writing to TMS tapes as it degrades performance.

· Exception: BMP steps require all files to be pre-allocated, including tapes.

· Alternatives:

· Catalog a 1 level GDG and write to the +1 generation as DISP=(,CATLG).

· Create a new file (tape) each time the tape file is to be written to.

· IDCAMS should be used to delete tape files as IDCAMS does not allocate a tape drive. The SYSIN should have the following format:

DELETE data set name NOSCRATCH

 If a tape is to be accessed in more than one center, the catalog entry will need to be equalized between the centers. Sample JCL exists in 'DXX.D948.EQUALCAT.CNTL'. Warning: If the catalog entry is deleted from the original center where the tape was cataloged, the tapes will be returned to the tape pool even though it may still be cataloged in another center.

· If a multi-volume data set will exceed 5 tapes, code VOL=(,,,20) for up to 20 tapes, or VOL=(,,,35) for up to 35 tapes, up to a maximum of 59 tapes.

· All tapes sent outside of Deere and Co. should utilize the following option to prevent tape compaction: TRTCH=NOCOMP.

· If label processing is needed, refer to TSO PDS 'DXX.D948.TMSGUIDE' for TMS guidelines as incorrect use can result in loss of data. Warning: If the data set cataloged as the first label of a tape is uncataloged, the tape is released to the tape pool even though there may be other data sets cataloged as labels to this tape.
