	Project Plan for Router Configuration Backup Scripts

	Overview
To comply with Audit requirements, Acme must have a change control system in place for router configurations. The change control system must perform the following functions.

1) Store all configurations data in encrypted format
2) Notify the appropriate users in the event of a configuration change to ensure validity of the changes

	Two scripts have been written in order to meet these requirements. A description of the scripts follows:

Retrieve Data:

Get the router configurations using the get_config script. This script logs on to the router, changes to enable modem and kicks off a “write net”, the program that allows routers to store configuration information on a remote host using “tftp”.

Requirements;

1) Expect
2) Tftp server
3) Exec and enable passwords for router(s)

	This program runs on node a (node a has expect)

	#!/usr/local/bin/expect

set timeout 10

spawn telnet xx.xx.xx.xx ; IP address

expect “word:”

sleep 1

Expect “node b”

Sleep 1

Send “en \ r”

Send “[enable_password] \r”

Expect “node c”

Sleep 1

Send “write net \r”

Expect “remote host [] ?”

Send “xx.xx.xx.xx \r”

Expect “filename [] ?”

Send “tftpboot /router-config \r”

Expect “node b”

Sleep 1

Send “exit”

	Performance analysis on configuration files:
Now compare the previous router version with the currently downloaded one using the router_change script.

Requirements:

1) Perl

2) Gzip

3) Crypt

4) Mail

5) Basic Unix commands

This script runs on philter and performs the following tasks:

1) Uncompresses and decrypts the previous week’s data;

2) Compares last downloaded configuration with the last known good configuration;

3) Encrypts the data;

4) Compresses the configuration file, and;

5) If any changes have been detected, mails all changes to the fwadmin@customer.com alias.

#!/usr/local/bin/perl

#
This program runs every 24 hours in the cron table and checks to see whether the configuration files

have been modified. If they have a mail account, it is sent to the firewall admins with all changes

applied

#

Step 1: check to see if files have changed:

Files to check: /tftpboot/router-acme

#

@list = (“router-acme”) ;

$date = system (“date +%m-%d-%Y”) ;

print (“@list”) ;

foreach $config (@list) {

#compare files

print (“Comparing $config\n”) ;

system (“gzip –d /tftpboot/$config.bak.cr.gz; crypt `hostid` <

/tftpboot/$config.bak.cr > /tftpboot/$config.bak “) ;

system (“diff /tftpboot/$config /tftpboot/$config.bak > /tmp/$config.df”) ;

if (-z “/tmp/$config.df”) {

print (“No diffs found for $config\n”) ;

break;

} else {

print (“diffs found for $config\n”) ;

open (OUTFILE, “ >> /tmp/$config.df2”) ;

print OUTFILE)

“

The /tftpboot/$config file has changed.

Note:

The \”\>\” indicates a line has been removed from the configuration.

The \”\<\” indicates a line has been added to the configuration.

“) ;

close (OUTFILE) ;

system (“cat /tmp/$config.df >> /tmp/$config.df2”) ;

system (“mailx –s \”Configuration change for \/tftpboot\/$config\”

fwadmin@customer.com < /tmp/$config.df2”) ;

print (“Done comparing $config\n”) ;

}

Always roll the $config

system (“cp /tftpboot/$config /tftpboot/$config.$date”) ;

system (“cp /tftpboot/$config.$date /tftpboot/$config.bak”) ;

system (“crypt `hosted` /tftpboot/$config.bak > /tftpboot.$config.bak.cr;

gzip /tftpboot.$config.bak.cr”) ;

if (-e “/tmp/$config.df” | | -e “/tmp/$config.df2”) {

system (“rm /tmp/$config.df*”) ;

}

}

	Current Status:

All scripts have been written. All required programs are running on the appropriate systems.

The tftp server on Node c are operational

